Chin. Phys. Lett.  2015, Vol. 32 Issue (08): 088801    DOI: 10.1088/0256-307X/32/8/088801
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Effect of Valence Band Tail Width on the Open Circuit Voltage of P3HT:PCBM Bulk Heterojunction Solar Cell: AMPS-1D Simulation Study
Bushra Mohamed Omer1,2**
1Department of Physics, College of Science and Arts, Taif University, Ranyah 21975, Saudi Arabia
2Department of Applied Physics and Mathematics, Faculty of Applied Science and Computer, Omdurman Ahlia University, Omdurman 786, Sudan
Cite this article:   
Bushra Mohamed Omer 2015 Chin. Phys. Lett. 32 088801
Download: PDF(615KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effect of the valence band tail width on the open circuit voltage of P3HT:PCBM bulk heterojunction solar cell is investigated by using the AMPS-1D computer program. An effective medium model with exponential valence and conduction band tail states is used to simulate the photovoltaic cell. The simulation result shows that the open circuit voltage depends linearly on the logarithm of the generation rate and the slope depends on the width of the valence band tail. The open circuit voltage decreases with the increasing width of the band tail. The dark and light ideality factors increase with the width of the valence band tail.
Received: 13 January 2015      Published: 02 September 2015
PACS:  88.40.jr (Organic photovoltaics)  
  88.40.H- (Solar cells (photovoltaics))  
  85.60.-q (Optoelectronic devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  81.05.Fb (Organic semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/8/088801       OR      https://cpl.iphy.ac.cn/Y2015/V32/I08/088801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bushra Mohamed Omer
[1] He Z, Zhong C, Su S, Xu M, Wu H and Cao Y 2012 Nat. Photon. 6 591
[2] Koster L, Smits E, Mihailetchi V and Blom P 2005 Phys. Rev. B 72 085205
[3] Koster L, Mihailetchi V and Blom P 2006 Appl. Phys. Lett. 88 052104
[4] Koster L, Mihailetchi V, Ramaker R and Blom P 2005 Appl. Phys. Lett. 86 123509
[5] Wetzelaer G, Kuik M and Blom P 2012 Adv. Energy Mater. 2 1232
[6] Nalwa K, Mahadevapuram R and Chaudhary S 2011 Appl. Phys. Lett. 98 093306
[7] Slooff L, Veenstra S, Kroon J, Verhees W, Koster L and Galagan Y 2014 Phys. Chem. Chem. Phys. 16 5732
[8] Park B, You N and Reichmanis E 2012 J. Appl. Phys. 111 084908
[9] Lenes M, Shelton S, Seival A, Kronholm D, Hummelen J and Blom P 2009 Adv. Funct. Mater. 19 3002
[10] Elliott L, Basham J, Pernstich K, Shrestha P, Richter L, Delongchamp D and Gundlach D 2014 Adv. Energy Mater. 56 14003
[11] Sliauzys G, Juska G, Arlauskas K, Pivrikas A, Osterbacka R, Scharber M, Mozer A and Sariciftci N 2006 Thin Solid Films 511 224
[12] Deibel C, Wagenpfahl A and Dyakonov V 2009 Phys. Rev. B 80 075203
[13] Shuttle C G, Organ B, Ballantyne A M, Nelson J, Bradley D D C, Mello J and Durrant J 2008 Appl. Phys. Lett. 92 093311
[14] Spoltore D, Oosterbaan W, Khelifi S, Clifford J, Viterisi A, Palomares E, Burgelman M, Lutsen L, Vanderzande D and Manca J 2013 Adv. Energy Mater. 3 466
[15] Shockley W and Read W T 1952 Phys. Rev. 87 835
[16] Mandoc M, Kooistra F, Hummelen J, Boer B and Blom P 2007 Appl. Phys. Lett. 91 263505
[17] Seki K, Marumoto K and Tashiya M 2014 Jpn. J. Appl. Phys. 53 01AB13
[18] Street R, Song K, Northrup J and Cowan S 2011 Phys. Rev. B 83 165207
[19] Mackenzie R, Kirchartz T, Dibb G and Nelson J 2011 J. Phys. Chem. C 115 9806
[20] Stephen J F et al 1997 A Manual for AMPS-1D for Windows: A One-Dimensional Device Simulation Program for the Analysis of Microelectronic and Photonic Structures (Pennsylvania: Pennsylvania State University)
[21] Kim Y, Choulis S, Nelson J and Bradley D 2005 J. Mater. Sci. 40 1371
[22] Kirchartz T, Pieters B, Kirkpatrick J, Rau U and Nelson J 2011 Phys. Rev. B 83 115209
[23] Ripolles T, Geurrero A and Belmonte G 2013 Appl. Phys. Lett. 103 243306
[24] Khelifi S, Decock K, Lauwaert J, Vrielinck H, Spoltore D, Piersimoni F, Manca J, Belghanchi A and Burgelman M 2011 J. Appl. Phys. 110 094509
[25] Presselt M, Barenklau M, Rosch R, Beenken W, Runge E, Shokhovets S, Hoppe H and Gobsch G 2010 Appl. Phys. Lett. 97 253302
[26] Beiley Z, Hoke E, Noriega R, Dacuna J, Burkhard G, Bartelt J, Salleo A, Toney M and McGehee M 2011 Adv. Energy Mater. 1 954
[27] Street R 2011 Phys. Rev. B 84 075208
[28] Belmonte G 2013 Solid-State Electron. 79 201
Related articles from Frontiers Journals
[1] Min-Nan Guo, Shao-Wei Liu, Na Guo, Li-Ying Yang, Wen-Jing Qin, Shou-Gen Yin. Performance and Stability of Polymer Solar Cells Based on the Blends of Poly(3-Hexylthiophene) and Indene-C$_{60}$ Bis-Adduct[J]. Chin. Phys. Lett., 2016, 33(07): 088801
[2] ZHANG Ruo-Chuan, WANG Meng-Ying, YANG Li-Ying, QIN Wen-Jing, YIN Shou-Gen. Polymer Solar Cells Using a PEDOT:PSS/Cu Nanowires/PEDOT:PSS Multilayer as the Anode Interlayer[J]. Chin. Phys. Lett., 2015, 32(07): 088801
[3] LIU Qian, HE Zhi-Qun, LIANG Chun-Jun, ZHAO Yong, XIAO Wei-Kang, LI Dan. Effect of Crystallinity of Fullerene Derivatives on Doping Density in the Organic Bulk Heterojunction Layer in Polymer Solar Cells[J]. Chin. Phys. Lett., 2015, 32(5): 088801
[4] FAN Xing, ZHAO Su-Ling, CHEN Yu, ZHANG Jie, YANG Qian-Qian, GONG Wei, XU Zheng, XU Xu-Rong. Effects of Thermal Annealing on the Solvent Additive P3HT PC61BM Bulk Heterojunction Solar Cells[J]. Chin. Phys. Lett., 2015, 32(5): 088801
[5] XIAO Man-Jun, SHEN Wen-Fei, WANG Jun-Yi, HAN Liang-Liang, CHEN Wei-Chao, BAO Xi-Chang, YANG Ren-Qiang, ZHU Wei-Guo. Efficient Annealing-Free P3HT:PC61BM-Based Organic Solar Cells by Using a Novel Solvent Additive without a Halogen or Sulphur Atom[J]. Chin. Phys. Lett., 2015, 32(02): 088801
[6] ZHENG Ke-Ning, YANG Li-Ying, CAO Huan-Qi, QIN Wen-Jing, YIN Shou-Gen. A Simple Interconnection Layer for Tandem Organic Solar Cells with Improved Efficiency and Fill Factor[J]. Chin. Phys. Lett., 2014, 31(06): 088801
[7] LIU Jian, WU Jiang, SHAO Shu-Yan, XIE Zhi-Yuan, GUO Shi-Jie. Nanoscale Phase Separation-Induced Suppression of Geminate Recombination in Low Bandgap Polymer-Fullerene Solar Cells[J]. Chin. Phys. Lett., 2014, 31(05): 088801
[8] HOU Teng, LIANG Chun-Jun, ZHANG Fu-Jun, HE Zhi-Qun, SUN Kai. Laminated Polymer Solar Cells with PEDOT:PSS Film as Anode[J]. Chin. Phys. Lett., 2014, 31(2): 088801
[9] XU Xue-Jian, YANG Li-Ying, TIAN Hui, QIN Wen-Jing, YIN Shou-Gen, ZHANG Fengling. Enhanced Performance and Stability in Polymer Photovoltaic Cells Using Ultraviolet-Treated PEDOT:PSS[J]. Chin. Phys. Lett., 2013, 30(7): 088801
[10] FANG Gang, WU Jiang, FU Ying-Ying, MENG Bin, XIE Zhi-Yuan, GUO Shi-Jie . Improved Charge-Collection Efficiency in PCDTBT:PC71BM-Based Solar Cells via CS2 Solvent Vapor Annealing[J]. Chin. Phys. Lett., 2013, 30(6): 088801
[11] LI Yan-Fang, YANG Li-Ying, QIN Wen-Jing, YIN Shou-Gen, ZHANG Feng-Ling. Efficiency Enhancement of MEH-PPV:PCBM Solar Cells by Addition of Ditertutyl Peroxide as an Additive[J]. Chin. Phys. Lett., 2013, 30(1): 088801
[12] WU Jiang, GUO Xiao-Yang, XIE Zhi-Yuan. Effects of the Molybdenum Oxide/Metal Anode Interfaces on Inverted Polymer Solar Cells[J]. Chin. Phys. Lett., 2012, 29(9): 088801
[13] GUO Xiao-Yang, LUO Jin-Song, CHEN Hong, and LIU Xing-Yuan. Polymer Photovoltaic Cells Based on Ultraviolet-Ozone-Treated Vanadium-Doped Indium Oxide Anodes[J]. Chin. Phys. Lett., 2012, 29(8): 088801
[14] CHEN Zheng, DENG Zhen-Bo, ZHOU Mao-Yang, LÜ Zhao-Yue, DU Hai-Liang, ZOU Ye, YIN Yue-Hong, LUN Jian-Chao. A Poly-(3-Hexylthiophene) (P3HT)/[6,6]-Phenyl-C61-Butyric Acid Methyl Ester (PCBM) Bilayer Organic Solar Cell Fabricated by Airbrush Spray Deposition[J]. Chin. Phys. Lett., 2012, 29(7): 088801
[15] Guo-Long Li, Hao Wang, Jing-Rong Meng, Jin Li, Li-Jun He, Ming-Kui Wang. Effect of Optical Microcavity on Absorption Behavior of Homo-Tandem Organic Solar Cells[J]. Chin. Phys. Lett., 2017, 34(11): 088801
Viewed
Full text


Abstract