Chin. Phys. Lett.  2015, Vol. 32 Issue (08): 088701    DOI: 10.1088/0256-307X/32/8/088701
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Motion-Enhanced Quantum Entanglement in the Dynamics of Excitation Transfer
SONG Wei1**, HUANG Yi-Sheng2, YANG Ming2, CAO Zhuo-Liang1
1Institute for Quantum Control and Quantum Information, and School of Electronic and Information Engineering, Hefei Normal University, Hefei 230601
2School of Physics and Material Science, Anhui University, Hefei 230601
Cite this article:   
SONG Wei, HUANG Yi-Sheng, YANG Ming et al  2015 Chin. Phys. Lett. 32 088701
Download: PDF(1752KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the dynamics of entanglement in the excitation transfer through a model consisting of three interacting molecules coupled to environments. It is shown that the entanglement can be further enhanced if the distance between the molecules is oscillating. Our results demonstrate that the motional effect plays a constructive role on quantum entanglement in the dynamics of excitation transfer. This mechanism might provide a useful guideline for designing artificial systems to battle against decoherence.
Received: 15 March 2015      Published: 02 September 2015
PACS:  87.15.A- (Theory, modeling, and computer simulation)  
  87.15.hj (Transport dynamics)  
  03.67.-a (Quantum information)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/8/088701       OR      https://cpl.iphy.ac.cn/Y2015/V32/I08/088701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SONG Wei
HUANG Yi-Sheng
YANG Ming
CAO Zhuo-Liang
[1] Briegel H J and Popescu S 2008 arXiv:0806.4552[quant-ph]
[2] Thorwart M et al 2009 Chem. Phys. Lett. 478 234
[3] Cai Jianming et al 2010 Phys. Rev. E 82 021921
[4] Guerreschi G G et al 2012 New J. Phys. 14 053043
[5] Galve F et al 2010 Phys. Rev. Lett. 105 180501
[6] Engel G S et al 2007 Nature 446 782
[7] Panitchayangkoon G, Hayes D, Fransted K A, Caram J R, Harel E, Wen J, Blankenship R E and Engel G S 2010 Proc. Natl. Acad. Sci. USA 107 12766
[8] Plenio M B and Huelga S F 2008 New J. Phys. 10 113019
[9] Nalbach P, Braun D and Thorwart M 2011 Phys. Rev. E 84 041926
[10] Ai B Q and Zhu S L 2012 Phys. Rev. E 86 061917
[11] Castro A Olaya, Lee C F, Olsen F F and Johnson N F 2008 Phys. Rev. B 78 085115
[12] Kassal I, Zhou J Y and Keshari S R 2013 J. Phys. Chem. Lett. 4 362
[13] Yang S, Xu D Z, Song Z and Sun C P 2010 J. Chem. Phys. 132 234501
[14] Chin A W, Datta A, Caruso F, Huelga S F and Plenio M B 2010 New J. Phys. 12 065002
[15] Liang X T 2010 Phys. Rev. E 82 051918
[16] Ishizakia A and Fleming G R 2009 Proc. Natl. Acad. Sci. USA 106 17255
[17] Ghosh P K, Smirnov A Y and Nori F 2011 J. Chem. Phys. 134 244103
[18] Tan Q S and Kuang L M 2012 Commun. Theor. Phys. 58 359
[19] Rey M, Chin A W, Huelga S F and Plenio M B 2013 J. Phys. Chem. Lett. 4 903
[20] Asadian A, Tiersch M, Guerreschi G G, Cai Jianming, Popescu S and Briegel H J 2010 New J. Phys. 12 075019
[21] Li H R, Zhang P, Liu Y J, Li F L and Zhu S Y 2013 Phys. Rev. A 87 053831
[22] Qin M, Shen H Z, Zhao X L and Yi X X 2014 Phys. Rev. E 90 042140
[23] Zhang Y P, Li H R, Fang A P, Chen H and Li F L 2013 Chin. Phys. B 22 057104
[24] Wang X L, Li H R, Zhang P, Li F L 2013 Chin. Phys. B 22 117102
[25] Sarovar M, Ishizaki A, Fleming G R and Whaley K B 2010 Nat. Phys. 6 462
[26] Vos M H, Rappaport F, Lambry J C, Breton J and Martin J L 1993 Nature 363 320
[27] Caruso F, Chin A W, Datta A, Huelga S F and Plenio M B 2010 Phys. Rev. A 81 062346
[28] Ishizaki A and Fleming G R 2010 New J. Phys. 12 055004
[29] Amerongen H van, Valkunas L, Grondelle R van 2000 Photosynthetic Excitons (Singapore: World Scientific)
[30] Blankenship R E 2002 Molecular Mechanisms of Photosynthesis (New York: John Wiley & Sons)
[31] Wootters W K 1998 Phys. Rev. Lett. 80 2245
Related articles from Frontiers Journals
[1] Zeng-Shuai Yan, Yao Xu, Hong-Ming Ding, and Yu-Qiang Ma. Molecular Insights into Striking Antibody Evasion of SARS-CoV-2 Omicron Variant[J]. Chin. Phys. Lett., 2022, 39(10): 088701
[2] Xiaosong Chen. Strong Anisotropy of 3D Diffusion in Living Cells[J]. Chin. Phys. Lett., 2020, 37(8): 088701
[3] Zhi-Wei Yang, Yi-Zhen Zhao, Yong-Jian Zang, He Wang, Xun Zhu, Ling-Jie Meng, Xiao-Hui Yuan, Lei Zhang, Sheng-Li Zhang. Rapid Structure-Based Screening Informs Potential Agents for Coronavirus Disease (COVID-19) Outbreak[J]. Chin. Phys. Lett., 2020, 37(5): 088701
[4] Lin Tian, Zhang-Cai Long. Auditory Hopf Amplification Revealed by an Energy Method[J]. Chin. Phys. Lett., 2017, 34(4): 088701
[5] Jiang-Xing Chen, Qiang Zheng, Chun-Yun Huang, Jiang-Rong Xu, He-Ping Ying. Interaction of Pair Particles Mediated by Signal Molecules[J]. Chin. Phys. Lett., 2016, 33(01): 088701
[6] LI Duo-Fang, CAO Tian-Guang, GENG Jin-Peng, QIAO Li-Hua, GU Jian-Zhong, ZHAN Yong. Error Threshold of Fully Random Eigen Model[J]. Chin. Phys. Lett., 2015, 32(01): 088701
[7] YU Hong-Ping, LI Shi-Bin, ZHANG Peng, WU Shuang-Hong, WEI Xiong-Bang, WU Zhi-Ming, CHEN Zhi. Optical Performance of N-Face AlGaN Ultraviolet Light Emitting Diodes[J]. Chin. Phys. Lett., 2014, 31(10): 088701
[8] TONG Jin-Hui, ZHAO Bi-Jun, REN Zhi-Wei, WANG Xing-Fu, CHEN Xin, LI Shu-Ti . InGaN-Based Blue Light Emitting Diodes with AlInN-GaN-AlInN Electron Blocking Layers[J]. Chin. Phys. Lett., 2013, 30(5): 088701
[9] LUO Da-Feng, CHEN Cui-Ping, PENG Ju. The Efficiency Improvement of Blue InGaN Multiple Quantum-Well Light-Emitting Diodes with AlGaN/InGaN Superlattice Barriers[J]. Chin. Phys. Lett., 2013, 30(3): 088701
[10] CHEN Jun, FAN Guang-Han**, PANG-Wei, ZHENG Shu-Wen . Comparison of GaN-Based Light-Emitting Diodes by Using the AlGaN Electron-Blocking Layer and InAlN Electron-Blocking Layer[J]. Chin. Phys. Lett., 2011, 28(12): 088701
[11] QI Wen-Peng, LEI Xiao-Ling** . DNA Conformational Variations Induced by Stretching 3'5'-Termini Studied by Molecular Dynamics Simulations[J]. Chin. Phys. Lett., 2011, 28(4): 088701
Viewed
Full text


Abstract