Chin. Phys. Lett.  2015, Vol. 32 Issue (08): 088504    DOI: 10.1088/0256-307X/32/8/088504
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
High Responsivity Organic Ultraviolet Photodetector Based on NPB Donor and C60 Acceptor
WANG Yong-Fan1, QU Feng-Dong1, ZHOU Jing-Ran1, GUO Wen-Bin2, DONG Wei2, LIU Cai-Xia2**, RUAN Sheng-Ping1**
1State Key Laboratory on Integrated Optoelectronics, Jilin University, Changchun 130012
2College of Electronic Science and Engineering, Jilin University, Changchun 130012
Cite this article:   
WANG Yong-Fan, QU Feng-Dong, ZHOU Jing-Ran et al  2015 Chin. Phys. Lett. 32 088504
Download: PDF(711KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report fabrication and characterization of organic heterojunction UV detectors based on N,N'?bis(naphthalen?1-yl)-N,N'-bis (phenyl) benzidine (NPB) and fullerene C60. The effects of different thicknesses of NPB and C60 layers are studied and compared. Notably, the optimal thicknesses of electron acceptor C60 and electron donor NPB are 40 nm and 80 nm, respectively. The JV characteristic curves of the device demonstrate a three-order-of-magnitude difference when illuminated under a 350 nm UV light and in the dark at -0.5 V. The device exhibits high sensitivity in the region of 320–380 nm with the peak located around 350 nm. Especially, it shows excellent photo-response characteristic with a responsivity as high as 315 mA/W under the illumination of 192 μW?cm?2 350 nm UV light at -5 V. These results indicate that the NPB/C60 heterojunction structure device might be used as low-cost low-voltage UV photodetectors.
Received: 01 April 2015      Published: 02 September 2015
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
  81.05.Fb (Organic semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/8/088504       OR      https://cpl.iphy.ac.cn/Y2015/V32/I08/088504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Yong-Fan
QU Feng-Dong
ZHOU Jing-Ran
GUO Wen-Bin
DONG Wei
LIU Cai-Xia
RUAN Sheng-Ping
[1] Monroy E, Omnes F and Calle F 2003 Semicond. Sci. Technol. 18 R33
[2] Razeghi M and Rogalski A 1996 J. Appl. Phys. 79 7433
[3] Tuzzolino A J 1964 Rev. Sci. Instrum. 35 1332
[4] Baertsch R D and Richardson J R 1969 J. Appl. Phys. 40 229
[5] Kübarsepp T, K ?rh? P and Ikonen E 2000 Appl. Opt. 39 9
[6] Zhou Y et al 2007 Appl. Phys. Lett. 90 121118
[7] Lee K H et al 2008 J. Electrochem. Soc. 155 J165
[8] Duboz J Y et al 2002 J. Appl. Phys. 92 5602
[9] Li J et al 2006 Appl. Phys. Lett. 89 213510
[10] Wang K, Vygranenko Y and Nathan A 2007 J. Appl. Phys. 101 114508
[11] Zhao Y et al 2009 ACS Appl. Mater. Interfaces 1 2428
[12] Hu Z et al2012 Opt. Lett. 37 3072
[13] Sciuto A, Roccaforte F and Raineri V 2008 Appl. Phys. Lett. 92 093505
[14] Liao M, Koide Y and Alvarez J 2006 Appl. Phys. Lett. 88 033504
[15] Zhang G et al 2009 Org. Electron. 10 352
[16] Su Z et al 2008 Appl. Phys. Lett. 93 103309
[17] Ray D and Narasimhan K L 2007 Appl. Phys. Lett. 91 093516
[18] Li H G et al2011 Sens. Actuators B 160 1136
[19] Tse S C, Kwok K C and So S K 2006 Appl. Phys. Lett. 89 262102
[20] Tse S C, Tsang S W and So S K 2006 J. Appl. Phys. 100 063708
[21] Choukri H et al 2006 Appl. Phys. Lett. 89 183513
[22] Tse S C, Tsung K K and So S K 2007 Appl. Phys. Lett. 90 213502
[23] Dai S et al 1994 J. Chem. Phys. 101 4470
[24] Peumans P and Forrest S 2001 Appl. Phys. Lett. 79 126
[25] Chan M et al 2006 J. Appl. Phys. 100 094506
[26] Oertel D C et al 2005 Appl. Phys. Lett. 87 213505
Related articles from Frontiers Journals
[1] Yuan-Fang Yu, Ye Zhang, Fan Zhong, Lin Bai, Hui Liu, Jun-Peng Lu, and Zhen-Hua Ni. Highly Sensitive Mid-Infrared Photodetector Enabled by Plasmonic Hot Carriers in the First Atmospheric Window[J]. Chin. Phys. Lett., 2022, 39(5): 088504
[2] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2020, 37(6): 088504
[3] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes[J]. Chin. Phys. Lett., 2020, 37(6): 088504
[4] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition *[J]. Chin. Phys. Lett., 0, (): 088504
[5] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes *[J]. Chin. Phys. Lett., 0, (): 088504
[6] Xiu-Li Li, Zhi Liu, Lin-Zhi Peng, Xiang-Quan Liu, Nan Wang, Yue Zhao, Jun Zheng, Yu-Hua Zuo, Chun-Lai Xue, Bu-Wen Cheng. High-Performance Germanium Waveguide Photodetectors on Silicon[J]. Chin. Phys. Lett., 2020, 37(3): 088504
[7] Bing-Cheng Du, Zhao-Hui Li, Guang-Yue Shen, Tian-Xiang Zheng, Hai-Yan Zhang, Lei Yang, Guang Wu. A Photon-Counting Full-Waveform Lidar[J]. Chin. Phys. Lett., 2019, 36(9): 088504
[8] Xue-Hui Lu, Cheng-Bin Jing, Lian-Wei Wang, Jun-Hao Chu. An Improved Room-Temperature Silicon Terahertz Photodetector on Sapphire Substrates[J]. Chin. Phys. Lett., 2019, 36(9): 088504
[9] Ben Du, Yi Gu, Yong-Gang Zhang, Xing-You Chen, Ying-Jie Ma, Yan-Hui Shi, Jian Zhang. Wavelength Extended InGaAsBi Detectors with Temperature-Insensitive Cutoff Wavelength[J]. Chin. Phys. Lett., 2018, 35(7): 088504
[10] Ming Wei, Chun-Xiang Xu, Fei-Fei Qin, Arumugam Gowri Manohari, Jun-Feng Lu, Qiu-Xiang Zhu. Optical Field Confinement Enhanced Single ZnO Microrod UV Photodetector[J]. Chin. Phys. Lett., 2017, 34(7): 088504
[11] Dong-Wei Jiang, Wei Xiang, Feng-Yun Guo, Hong-Yue Hao, Xi Han, Xiao-Chao Li, Guo-Wei Wang, Ying-Qiang Xu, Qing-Jiang Yu, Zhi-Chuan Niu. Low Crosstalk Three-Color Infrared Detector by Controlling the Minority Carriers Type of InAs/GaSb Superlattices for Middle-Long and Very-Long Wavelength[J]. Chin. Phys. Lett., 2016, 33(04): 088504
[12] Yang Li, Sheng-Kai Liao, Fu-Tian Liang, Qi Shen, Hao Liang, Cheng-Zhi Peng. Post-processing Free Quantum Random Number Generator Based on Avalanche Photodiode Array[J]. Chin. Phys. Lett., 2016, 33(03): 088504
[13] LIU Fei, ZHOU Dong, LU Hai, CHEN Dun-Jun, REN Fang-Fang, ZHANG Rong, ZHENG You-Dou. Passive Quenching Electronics for Geiger Mode 4H-SiC Avalanche Photodiodes[J]. Chin. Phys. Lett., 2015, 32(12): 088504
[14] LV Qian-Qian, YE Han, YIN Dong-Dong, YANG Xiao-Hong, HAN Qin. An Array Consisting of 10 High-Speed Side-Illuminated Evanescently Coupled Waveguide Photodetectors Each with a Bandwidth of 20 GHz[J]. Chin. Phys. Lett., 2015, 32(12): 088504
[15] WENG Qian-Chun, AN Zheng-Hua, XIONG Da-Yuan, ZHU Zi-Qiang. Quantum Coupling Effect between Quantum Dot and Quantum Well in a Resonant Tunneling Photon-Number-Resolving Detector[J]. Chin. Phys. Lett., 2015, 32(10): 088504
Viewed
Full text


Abstract