CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
InxGa1?xN/GaN Multiple Quantum Well Solar Cells with Conversion Efficiency of 3.77% |
LIU Shi-Ming1, XIAO Hong-Ling1, WANG Quan1,2, YAN Jun-Da1, ZHAN Xiang-Mi1, GONG Jia-Min2, WANG Xiao-Liang1,3,**, WANG Zhan-Guo1,3 |
1Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083 2School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121 3Beijing Key Laboratory of Low-Dimensional Semiconductor Materials and Devices, P. O. Box 912, Beijing 100083
|
|
Cite this article: |
LIU Shi-Ming, XIAO Hong-Ling, WANG Quan et al 2015 Chin. Phys. Lett. 32 088401 |
|
|
Abstract We report on fabrication and photovoltaic characteristics of InxGa1?xN/GaN multiple quantum well solar cells with different indium compositions and barrier thicknesses. The as-grown samples are characterized by high-resolution x-ray diffraction and reciprocal space mapping. The results show that the sample with a thick barrier thickness (10.0 nm) and high indium composition (0.23) has better crystalline quality. In addition, the dark current density-voltage (J–V) measurement of this device shows a significant decrease of leakage current, which leads to high open-circuit voltage Voc. Through the J–V characteristics under an Air Mass 1.5 Global (AM 1.5 G) illumination, this device exhibits a Voc of 1.89 V, a short-circuit current density Jsc of 3.92 mA/cm2 and a fill factor of 50.96%. As a result, the conversion efficiency (η) is enhanced to be 3.77% in comparison with other devices.
|
|
Received: 15 May 2015
Published: 02 September 2015
|
|
PACS: |
84.60.Jt
|
(Photoelectric conversion)
|
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
|
|
|
[1] Pearton S J and Ren F 2000 Adv. Mater. 12 1571 [2] Jiang H X, Jin S J, Li J, Shakya J and Lin J Y 2001 Appl. Phys. Lett. 78 1303 [3] Wu J 2009 J. Appl. Phys. 106 011101 [4] Wu J, Walukiewicz W, Yu K M, Shan W, Ager J W, Haller E E, Lu H, Schaff W J, Metzger W K and Kurtz S 2003 J. Appl. Phys. 94 6477 [5] Muth J F, Lee J H, Shmagin I K, Kolbas R M, Casey H C, Keller B P, Mishra U K and DenBaars S P 1997 Appl. Phys. Lett. 71 2572 [6] Jani O, Ferguson I, Honsberg C and Kurtz S 2007 Appl. Phys. Lett. 91 132117 [7] Lu T C, Kao C C, Kuo H C, Huang G S and Wang S C 2008 Appl. Phys. Lett. 92 141102 [8] Nakamura S 1998 Science 281 956 [9] Tansley T L and Foley C P 1986 J. Appl. Phys. 59 3241 [10] Davydov V Y, Klochikhin A A, Emtsev V V, Ivanov S V, Vekshin V V, Bechstedt F, Furthmuller J, Harima H, Mudryi A V, Hashimoto A, Yamamoto A, Aderhold J, Graul J and Haller E E 2002 Phys. Status Solidi B 230 R4 [11] Xiao H L, Wang X L, Wang J X, Zhang N H, Liu H X, Zeng Y P, Jin J M and Wang Z G 2005 J. Cryst. Growth 276 401 [12] Deng Q W, Wang X L, Yang C B, Xiao H L, Wang C M, Yin H B, Hou Q F, Bi Y, Li J M, Wang Z G and Hou X 2011 Chin. Phys. Lett. 28 018401 [13] Zhang X B, Wang X L, Xiao H L, Yang C B, Ran J X, Wang C M, Hou Q F and Li J M 2007 J. Phys. D: Appl. Phys. 40 7335 [14] Deng Q W, Wang X L, Xiao H L, Wang C M, Yin H B, Chen H, Hou Q F, Lin D F, Li J M, Wang Z G and Hou X 2011 J. Phys. D: Appl. Phys. 44 265103 [15] Zhang X B, Wang X L, Xiao H L, Yang C B, Ran J X, Wang C M, Hou Q F, Li J M and Wang Z G 2008 J. Phys. D: Appl. Phys. 41 245106 [16] Deng Q W, Wang X L, Yang C B, Xiao H L, Wang C M, Yin H B, Chen H, Hou Q F, Li J M, Wang Z G and Hou X 2011 Physica B 406 73 [17] Luque A and Martí A 1997 Phys. Rev. Lett. 78 5014 [18] Dahal R, Pantha B, Li J, Lin J Y and Jiang H X 2009 Appl. Phys. Lett. 94 063505 [19] Zhang X B, Wang X L, Xiao H L, Yang C B, Hou Q F, Yin H B, Chen H and Wang Z G 2011 Chin. Phys. B 20 028402 [20] Li Z D, Xiao H L, Wang X L, Wang C M, Deng Q W, Jing L, Ding J Q, Wang Z G and Hou X 2013 Chin. Phys. Lett. 30 068402 [21] Wakahara A, Tokuda T, Dang X Z, Noda S and Sasaki A 1997 Appl. Phys. Lett. 71 906 [22] Kim I H, Park H S, Park Y J and Dahal T K 1998 Appl. Phys. Lett. 73 1634 [23] Wang H W, Chen H C, Chang Y A, Lin C C, Han H W, M A Tsai and Kuo H C 2011 IEEE Photon. Technol. Lett. 23 1304 [24] Carl J N, Nikholas G T, Samantha C C, Michael I, Steven P D and Umesh K M 2008 Appl. Phys. Lett. 93 143502 [25] Chen K T, Lin C F, Lin C M, Yang C C and Jiang R H 2010 Thin Solid Films 518 7377 [26] Young N G, Perl E E, Farrell R M, Iza M, Keller S, Bowers J E, Nakamura S, DenBaars S P and Speck J S 2014 Appl. Phys. Lett. 104 163902 [27] Lee Y J, Lee M H, Cheng C M and Yang C H 2011 Appl. Phys. Lett. 98 263504 [28] Jeng M J, Lee Y L and Chang L B 2009 J. Phys. D: Appl. Phys. 42 105101 [29] Tran B T, Chang E Y, Trinh H D, Lee C T, Sahoo K C, Lin K L, Huang M C, Yu H W, Luong T T, Chung C C and Nguyen C L 2012 Sol. Energy Mater. Sol. Cells 102 208 [30] Dahal R, Li J, Aryal K, Lin J Y and Jiang H X 2010 Appl. Phys. Lett. 97 073115 [31] Neufeld C J, Samatha C C, Robert M F, Iza M, Keller S, Nakamura S, Steven P D, James S S and Umesh K M 2011 Appl. Phys. Lett. 99 071104 [32] Wierer J J, Koleske D D and Lee S R 2012 Appl. Phys. Lett. 100 111119 [33] Young N G, Farrell R M, Hu Y L, Terao Y, Iza M, Keller S, DenBaars S P, Nakamura S and Speck J S 2013 Appl. Phys. Lett. 103 173903 [34] Sirona V F, Mukhtarova A, Grenet L, Bougerol C, Durand C, Eymery J and Monroy E 2014 Appl. Phys. Express 7 032301 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|