Chin. Phys. Lett.  2015, Vol. 32 Issue (08): 088401    DOI: 10.1088/0256-307X/32/8/088401
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
InxGa1?xN/GaN Multiple Quantum Well Solar Cells with Conversion Efficiency of 3.77%
LIU Shi-Ming1, XIAO Hong-Ling1, WANG Quan1,2, YAN Jun-Da1, ZHAN Xiang-Mi1, GONG Jia-Min2, WANG Xiao-Liang1,3,**, WANG Zhan-Guo1,3
1Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083
2School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121
3Beijing Key Laboratory of Low-Dimensional Semiconductor Materials and Devices, P. O. Box 912, Beijing 100083
Cite this article:   
LIU Shi-Ming, XIAO Hong-Ling, WANG Quan et al  2015 Chin. Phys. Lett. 32 088401
Download: PDF(1286KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report on fabrication and photovoltaic characteristics of InxGa1?xN/GaN multiple quantum well solar cells with different indium compositions and barrier thicknesses. The as-grown samples are characterized by high-resolution x-ray diffraction and reciprocal space mapping. The results show that the sample with a thick barrier thickness (10.0 nm) and high indium composition (0.23) has better crystalline quality. In addition, the dark current density-voltage (JV) measurement of this device shows a significant decrease of leakage current, which leads to high open-circuit voltage Voc. Through the JV characteristics under an Air Mass 1.5 Global (AM 1.5 G) illumination, this device exhibits a Voc of 1.89 V, a short-circuit current density Jsc of 3.92 mA/cm2 and a fill factor of 50.96%. As a result, the conversion efficiency (η) is enhanced to be 3.77% in comparison with other devices.
Received: 15 May 2015      Published: 02 September 2015
PACS:  84.60.Jt (Photoelectric conversion)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/8/088401       OR      https://cpl.iphy.ac.cn/Y2015/V32/I08/088401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Shi-Ming
XIAO Hong-Ling
WANG Quan
YAN Jun-Da
ZHAN Xiang-Mi
GONG Jia-Min
WANG Xiao-Liang
WANG Zhan-Guo
[1] Pearton S J and Ren F 2000 Adv. Mater. 12 1571
[2] Jiang H X, Jin S J, Li J, Shakya J and Lin J Y 2001 Appl. Phys. Lett. 78 1303
[3] Wu J 2009 J. Appl. Phys. 106 011101
[4] Wu J, Walukiewicz W, Yu K M, Shan W, Ager J W, Haller E E, Lu H, Schaff W J, Metzger W K and Kurtz S 2003 J. Appl. Phys. 94 6477
[5] Muth J F, Lee J H, Shmagin I K, Kolbas R M, Casey H C, Keller B P, Mishra U K and DenBaars S P 1997 Appl. Phys. Lett. 71 2572
[6] Jani O, Ferguson I, Honsberg C and Kurtz S 2007 Appl. Phys. Lett. 91 132117
[7] Lu T C, Kao C C, Kuo H C, Huang G S and Wang S C 2008 Appl. Phys. Lett. 92 141102
[8] Nakamura S 1998 Science 281 956
[9] Tansley T L and Foley C P 1986 J. Appl. Phys. 59 3241
[10] Davydov V Y, Klochikhin A A, Emtsev V V, Ivanov S V, Vekshin V V, Bechstedt F, Furthmuller J, Harima H, Mudryi A V, Hashimoto A, Yamamoto A, Aderhold J, Graul J and Haller E E 2002 Phys. Status Solidi B 230 R4
[11] Xiao H L, Wang X L, Wang J X, Zhang N H, Liu H X, Zeng Y P, Jin J M and Wang Z G 2005 J. Cryst. Growth 276 401
[12] Deng Q W, Wang X L, Yang C B, Xiao H L, Wang C M, Yin H B, Hou Q F, Bi Y, Li J M, Wang Z G and Hou X 2011 Chin. Phys. Lett. 28 018401
[13] Zhang X B, Wang X L, Xiao H L, Yang C B, Ran J X, Wang C M, Hou Q F and Li J M 2007 J. Phys. D: Appl. Phys. 40 7335
[14] Deng Q W, Wang X L, Xiao H L, Wang C M, Yin H B, Chen H, Hou Q F, Lin D F, Li J M, Wang Z G and Hou X 2011 J. Phys. D: Appl. Phys. 44 265103
[15] Zhang X B, Wang X L, Xiao H L, Yang C B, Ran J X, Wang C M, Hou Q F, Li J M and Wang Z G 2008 J. Phys. D: Appl. Phys. 41 245106
[16] Deng Q W, Wang X L, Yang C B, Xiao H L, Wang C M, Yin H B, Chen H, Hou Q F, Li J M, Wang Z G and Hou X 2011 Physica B 406 73
[17] Luque A and Martí A 1997 Phys. Rev. Lett. 78 5014
[18] Dahal R, Pantha B, Li J, Lin J Y and Jiang H X 2009 Appl. Phys. Lett. 94 063505
[19] Zhang X B, Wang X L, Xiao H L, Yang C B, Hou Q F, Yin H B, Chen H and Wang Z G 2011 Chin. Phys. B 20 028402
[20] Li Z D, Xiao H L, Wang X L, Wang C M, Deng Q W, Jing L, Ding J Q, Wang Z G and Hou X 2013 Chin. Phys. Lett. 30 068402
[21] Wakahara A, Tokuda T, Dang X Z, Noda S and Sasaki A 1997 Appl. Phys. Lett. 71 906
[22] Kim I H, Park H S, Park Y J and Dahal T K 1998 Appl. Phys. Lett. 73 1634
[23] Wang H W, Chen H C, Chang Y A, Lin C C, Han H W, M A Tsai and Kuo H C 2011 IEEE Photon. Technol. Lett. 23 1304
[24] Carl J N, Nikholas G T, Samantha C C, Michael I, Steven P D and Umesh K M 2008 Appl. Phys. Lett. 93 143502
[25] Chen K T, Lin C F, Lin C M, Yang C C and Jiang R H 2010 Thin Solid Films 518 7377
[26] Young N G, Perl E E, Farrell R M, Iza M, Keller S, Bowers J E, Nakamura S, DenBaars S P and Speck J S 2014 Appl. Phys. Lett. 104 163902
[27] Lee Y J, Lee M H, Cheng C M and Yang C H 2011 Appl. Phys. Lett. 98 263504
[28] Jeng M J, Lee Y L and Chang L B 2009 J. Phys. D: Appl. Phys. 42 105101
[29] Tran B T, Chang E Y, Trinh H D, Lee C T, Sahoo K C, Lin K L, Huang M C, Yu H W, Luong T T, Chung C C and Nguyen C L 2012 Sol. Energy Mater. Sol. Cells 102 208
[30] Dahal R, Li J, Aryal K, Lin J Y and Jiang H X 2010 Appl. Phys. Lett. 97 073115
[31] Neufeld C J, Samatha C C, Robert M F, Iza M, Keller S, Nakamura S, Steven P D, James S S and Umesh K M 2011 Appl. Phys. Lett. 99 071104
[32] Wierer J J, Koleske D D and Lee S R 2012 Appl. Phys. Lett. 100 111119
[33] Young N G, Farrell R M, Hu Y L, Terao Y, Iza M, Keller S, DenBaars S P, Nakamura S and Speck J S 2013 Appl. Phys. Lett. 103 173903
[34] Sirona V F, Mukhtarova A, Grenet L, Bougerol C, Durand C, Eymery J and Monroy E 2014 Appl. Phys. Express 7 032301
Related articles from Frontiers Journals
[1] Zihan Qu, Fei Ma, Yang Zhao, Xinbo Chu, Shiqi Yu, and Jingbi You. Updated Progresses in Perovskite Solar Cells[J]. Chin. Phys. Lett., 2021, 38(10): 088401
[2] Wen-Jian Shi, Ze-Ming Kan, Chuan-Hui Cheng, Wen-Hui Li, Hang-Qi Song, Meng Li, Dong-Qi Yu, Xiu-Yun Du, Wei-Feng Liu, Sheng-Ye Jin, and Shu-Lin Cong. Antimony Selenide Thin Film Solar Cells with an Electron Transport Layer of Alq$_{3}$[J]. Chin. Phys. Lett., 2020, 37(10): 088401
[3] Gen Yue, Zhen Deng, Sen Wang, Ran Xu, Xinxin Li, Ziguang Ma, Chunhua Du, Lu Wang, Yang Jiang, Haiqiang Jia, Wenxin Wang, Hong Chen. Absorption Enhancement of Silicon Solar Cell in a Positive-Intrinsic-Negative Junction[J]. Chin. Phys. Lett., 2019, 36(5): 088401
[4] Wan-Ying Zhao, Zhi-Liang Ku, Li-Ping Lv, Xian Lin, Yong Peng, Zuan-Ming Jin, Guo-Hong Ma, Jian-Quan Yao. Ultrafast Carrier Dynamics and Terahertz Photoconductivity of Mixed-Cation and Lead Mixed-Halide Hybrid Perovskites[J]. Chin. Phys. Lett., 2019, 36(2): 088401
[5] Rui Wu, Jun-Ling Wang, Gang Yan, Rong Wang. Photoluminescence Analysis of Electron Damage for Minority Carrier Diffusion Length in GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(4): 088401
[6] Hui-Jie Yan, Zhi-Liang Ku, Xue-Feng Hu, Wan-Ying Zhao, Min-Jian Zhong, Qi-Biao Zhu, Xian Lin, Zuan-Ming Jin, Guo-Hong Ma. Ultrafast Terahertz Probes of Charge Transfer and Recombination Pathway of CH$_{3}$NH$_{3}$PbI$_{3}$ Perovskites[J]. Chin. Phys. Lett., 2018, 35(2): 088401
[7] Jun-Ling Wang, Tian-Cheng Yi, Yong Zheng, Rui Wu, Rong Wang. Temperature-Dependent Photoluminescence Analysis of 1.0MeV Electron Irradiation-Induced Nonradiative Recombination Centers in n$^{+}$–p GaAs Middle Cell of GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2017, 34(7): 088401
[8] Du-Xiang Wang, Ming-Hui Song, Jing-Feng Bi, Wen-Jun Chen, Sen-Lin Li, Guan-Zhou Liu, Ming-Yang Li, Chao-Yu Wu. Enhanced Efficiency of Metamorphic Triple Junction Solar Cells for Space Applications[J]. Chin. Phys. Lett., 2017, 34(6): 088401
[9] Yong Zheng, Tian-Cheng Yi, Jun-Ling Wang, Peng-Fei Xiao, Rong Wang. Radiation Damage Analysis of Individual Subcells for GaInP/GaAs/Ge Solar Cells Using Photoluminescence Measurements[J]. Chin. Phys. Lett., 2017, 34(2): 088401
[10] Wen-Gui Wang, Li Zhu, Yu-Yan Weng, Wen Dong. TiO$_{2}$-Loaded WO$_{3}$ Composite Films for Enhancement of Photocurrent Density[J]. Chin. Phys. Lett., 2017, 34(2): 088401
[11] Jun-Na Zhang, Lei Wang, Zhun Dai, Xun Tang, You-Bo Liu, De-Ren Yang. The 18.3% Silicon Solar Cells with Nano-Structured Surface and Rear Emitter[J]. Chin. Phys. Lett., 2017, 34(2): 088401
[12] Yong Zheng, Tian-Cheng Yi, Peng-Fei Xiao, Juan Tang, Rong Wang. Photoluminescence Analysis of Injection-Enhanced Annealing of Electron Irradiation-Induced Defects in GaAs Middle Cells for Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2016, 33(05): 088401
[13] Talib Hussain, Hui-Qi Ye, Dong Xiao. Excess Carrier Lifetime Improvement in c-Si Solar Cells by YAG:Ce$^{3+}$-Yb$^{3+}$[J]. Chin. Phys. Lett., 2016, 33(05): 088401
[14] SUN Ding, GE Yang, XU Sheng-Zhi, ZHANG Li, LI Bao-Zhang, WANG Guang-Cai, WEI Chang-Chun, ZHAO Ying, ZHANG Xiao-Dan. Improvement of the Open Circuit Voltage of CZTSe Thin-Film Solar Cells by Surface Sulfurization Using SnS[J]. Chin. Phys. Lett., 2015, 32(12): 088401
[15] WANG Fei-Long, DAI Bin, LIU Xue-Feng, SUN Yi-Ning, SUN Zhi-Bin, YU Qiang, ZHAI Guang-Jie. Containerless Heating Process of a Deeply Undercooled Metal Droplet by Electrostatic Levitation[J]. Chin. Phys. Lett., 2015, 32(11): 088401
Viewed
Full text


Abstract