Chin. Phys. Lett.  2015, Vol. 32 Issue (08): 087503    DOI: 10.1088/0256-307X/32/8/087503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Ferroelectricity in the Ferrimagnetic Phase of Fe1?xMnxV2O4
ZHAO Ke-Han, WANG Yu-Hang, SHI Xiao-Lan, LIU Na, ZHANG Liu-Wan**
State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084
Cite this article:   
ZHAO Ke-Han, WANG Yu-Hang, SHI Xiao-Lan et al  2015 Chin. Phys. Lett. 32 087503
Download: PDF(778KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Ferroelectric and magnetic properties of Fe1?xMnxV2O4 (0≤x≤0.5) spinels are investigated on the basis of dielectric, polarization, and susceptibility measurements. Ferroelectric polarization is discovered in collinear ferrimagnetic and Yafet–Kittel magnetic phases for 0.1≤x≤0.4, which can be tuned by a magnetic field. As orbital-active Fe2+ is substituted with Mn2+, ferroelectric polarization decreases for 0≤x≤0.4 and disappears for x=0.5. We propose that the two polar components in ferroelectric polarization originate from the exchange striction mechanism and the spin-current model, respectively.
Received: 27 April 2015      Published: 02 September 2015
PACS:  75.85.+t (Magnetoelectric effects, multiferroics)  
  75.80.+q (Magnetomechanical effects, magnetostriction)  
  75.47.Lx (Magnetic oxides)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/8/087503       OR      https://cpl.iphy.ac.cn/Y2015/V32/I08/087503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Ke-Han
WANG Yu-Hang
SHI Xiao-Lan
LIU Na
ZHANG Liu-Wan
[1] Fiebig M 2005 J. Phys. D 38 R123
[2] Cheong S W and Mostovoy M 2007 Nat. Mater. 6 13
[3] Yamasaki Y et al 2006 Phys. Rev. Lett. 96 207204
[4] Singh K et al 2011 Appl. Phys. Lett. 99 172903
[5] Tsunetsugu H and Motome Y 2003 Phys. Rev. B 68 060405(R)
[6] Tchernyshyov O 2004 Phys. Rev. Lett. 93 157206
[7] Nii Y et al 2012 Phys. Rev. B 86 125142
[8] Giovannetti G et al 2011 Phys. Rev. B 83 060402(R)
[9] Zhang Q et al 2012 Phys. Rev. B 85 054405
[10] Katsufuji T et al 2008 J. Phys. Soc. Jpn. 77 053708
[11] MacDougall G J et al 2012 Phys. Rev. B 86 060414(R)
[12] Katsura H, Nagaosa N and Balatsky A V 2005 Phys. Rev. Lett. 95 057205
[13] Choudhury D et al 2014 Phys. Rev. B 89 104427
[14] Kawaguchi S et al 2014 J. Phys.: Condens. Matter 26 346001
[15] Zhao K H et al 2015 Chin. Phys. Lett. 32 027501
[16] Moreira J A et al 2010 J. Appl. Phys. 107 024108
[17] Kiswandhi A et al 2011 Phys. Rev. B 84 205138
[18] Wickham D G and Goodenough J B 1959 Phys. Rev. 115 1156
[19] Lawes G et al 2006 Phys. Rev. B 74 024413
[20] Katsufuji T and Takagi H 2001 Phys. Rev. B 64 054415
[21] Schrettle F et al 2009 Phys. Rev. Lett. 102 207208
[22] Bucci C, Fieschi R and Guidi G 1966 Phys. Rev. 148 816
[23] Rajeswaran B et al 2012 Phys. Rev. B 86 214409
[24] Zhang Q et al 2014 Phys. Rev. B 90 024418
[25] Sergienko I A, Sen C and Dagotto E 2006 Phys. Rev. Lett. 97 227204
Related articles from Frontiers Journals
[1] Feng Li, Weiyuan Duan, Manuel Pomaska, Malte Köhler, Kaining Ding, Yong Pu, Urs Aeberhard, and Uwe Rau. Quantum Transport across Amorphous-Crystalline Interfaces in Tunnel Oxide Passivated Contact Solar Cells: Direct versus Defect-Assisted Tunneling[J]. Chin. Phys. Lett., 2021, 38(3): 087503
[2] Yangping Wang, Hongyan Zhou, Yibing Zhao, Fufu Liu, and Changjun Jiang. Low Voltage Reversible Manipulation of Ferromagnetic Resonance Response in CoFeB/HfO$_{2}$ Heterostructures[J]. Chin. Phys. Lett., 2020, 37(12): 087503
[3] Shilei Ji , Hong Wu , Shuang Zhou , Wei Niu , Lujun Wei , Xing-Ao Li , Feng Li, and Yong Pu. Enhancement of Curie Temperature under Built-in Electric Field in Multi-Functional Janus Vanadium Dichalcogenides[J]. Chin. Phys. Lett., 2020, 37(8): 087503
[4] Hao He, Jiang-Tao Zhao, Zhen-Lin Luo, Yuan-Jun Yang, Han Xu, Bin Hong, Liang-Xin Wang, Rui-Xue Wang, Chen Gao. The Electric-Field Controllable Non-Volatile 35$^{\circ}$ Rotation of Magnetic Easy Axis in Magnetoelectric CoFeB/(001)-Cut Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$-25%PbTiO$_{3}$ Heterostructure[J]. Chin. Phys. Lett., 2016, 33(06): 087503
[5] XIAO Li-Xia, JIN Zhao, XIA Zheng-Cai, SHI Li-Ran, HUANG Jun-Wei, CHEN Bo-Rong, SHANG Cui, WEI Meng, LONG Zhuo. Effects of Doping on the Magnetic Properties and Frustration of Hexagonal YMn0.9A0.1O3 (A=Al, Fe, and Cu)[J]. Chin. Phys. Lett., 2015, 32(01): 087503
[6] SONG Ying-Jie, ZHANG Qing-Hua, SHEN Xi, NI Xiao-Dong, YAO Yuan, YU Ri-Cheng. Room-Temperature Magnetism Realized by Doping Fe into Ferroelectric LiTaO3[J]. Chin. Phys. Lett., 2014, 31(1): 087503
[7] RAO Wei, WANG Yun-Bo, WANG Ye-An, GAO Jun-Xiong, ZHOU Wen-Li, YU Jun. Magnetostatic Coupling in Ba0.8Sr0.2TiO3/CoFe2O4 Magnetoelectric Composite Thin Films of 2-2-Type Structure[J]. Chin. Phys. Lett., 2014, 31(1): 087503
[8] WANG Ye-An, WANG Yun-Bo, RAO Wei, GAO Jun-Xiong, ZHOU Wen-Li, YU Jun. Electric and Magnetic Properties and Magnetoelectric Effect of the Ba0.8Sr0.2TiO3/CoFe2O4 Heterostructure Film by Radio-Frequency Magnetron Sputtering[J]. Chin. Phys. Lett., 2013, 30(4): 087503
[9] WANG Ye-An, WANG Yun-Bo, RAO Wei, GAO Jun-Xiong, ZHOU Wen-Li, YU Jun. Electric and Magnetic Properties of the (1-x)Ba0.6Sr0.4TiO3-xCoFe2O4 Multiferroic Composite Ceramics[J]. Chin. Phys. Lett., 2012, 29(6): 087503
[10] ZHOU Yun**, CHEN Miao-Gen, FENG Zhen-Jie, WANG Xin-Yan, CUI Yu-Jian, ZHANG Jin-Cang . High Magnetoelectric Coupling in Nano–Microscale Particulate Composites at Low Frequency[J]. Chin. Phys. Lett., 2011, 28(10): 087503
Viewed
Full text


Abstract