Chin. Phys. Lett.  2015, Vol. 32 Issue (08): 087502    DOI: 10.1088/0256-307X/32/8/087502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
RC-Circuit-Like Dynamic Characteristic of the Magnetic Domain Wall in Flat Ferromagnetic Nanowires
CHEN Cheng1, PIAO Hong-Guang1, SHIM Je-Ho2, PAN Li-Qing1, KIM Dong-Hyun2
1College of Science, China Three Gorges University, Yichang 443002
2Department of Physics, Chungbuk National University, Cheongju 361-763, South Korea
Cite this article:   
CHEN Cheng, PIAO Hong-Guang, SHIM Je-Ho et al  2015 Chin. Phys. Lett. 32 087502
Download: PDF(807KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the dynamic behavior of the magnetic domain wall under perpendicular magnetic field pulses in flat ferromagnetic nanowires using micromagnetic simulations. It is found that the perpendicular magnetic field pulse can trigger the magnetic domain wall motion, where all the field torques are kept on the plane of nanowire strip. The speed of magnetic domain walls faster than several hundreds of meters per second is predicted without the Walker breakdown for the perpendicular magnetic driving field stronger than 200 mT. Interestingly, the dynamic behavior of the moving magnetic domain wall driven by perpendicular magnetic field pulses is explained by charging- and discharging-like behaviors of an electrical RC-circuit model, where the charging and the discharging of magnetic charges on the nanowire planes are considered. The concept of the RC-model-like dynamic characteristic of the magnetic domain wall might be promising for the applications in spintronic functional devices based on the magnetic domain wall motion.
Received: 08 April 2015      Published: 02 September 2015
PACS:  75.60.Ch (Domain walls and domain structure)  
  75.70.Kw (Domain structure (including magnetic bubbles and vortices))  
  75.60.Jk (Magnetization reversal mechanisms)  
  75.78.-n (Magnetization dynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/8/087502       OR      https://cpl.iphy.ac.cn/Y2015/V32/I08/087502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Cheng
PIAO Hong-Guang
SHIM Je-Ho
PAN Li-Qing
KIM Dong-Hyun
[1] Allwood D A, Xiong G, Faulkner C C, Atkinson D, Petit D and Cowburn R P 2005 Science 309 1688
[2] Piao H G, Choi H C, Shim J H, Kim D H and You C Y 2011 Appl. Phys. Lett. 99 192512
[3] Yamanouchi M, Chiba D, Matsukura F and Ohno H 2004 Nature 428 539
[4] Parkin S S P, Hayashi M and Thomas L 2008 Science 320 190
[5] Hayashi M, Thomas L, Moriya R, Rettner C and Parkin S S P 2008 Science 320 209
[6] Kim J S, Mawass M A, Bisig A, Krüger B, Reeve R M, Schulz T, Büttner F, Yoon J, You C Y, Weigand M, Stoll H, Schütz G, Swagten H J M, Koopmans B, Eisebitt S and Kl?ui M 2014 Nat. Commun. 5 3429
[7] Li Z D, He P B and Liu W M 2014 Chin. Phys. B 23 117502
[8] De Leeuw F H, Van Den Doel R and Enz U 1980 Rep. Prog. Phys. 43 689
[9] Nakatani Y, Thiaville A and Miltat J 2003 Nat. Mater. 2 521
[10] Hayashi M, Thomas L, Rettner C, Moriya R and Parkin S S P 2007 Nat. Phys. 3 21
[11] Kim S K, Lee J Y, Choi Y S, Guslienko K Y and Lee K S 2008 Appl. Phys. Lett. 93 052503
[12] Schryer N L and Walker L R 1974 J. Appl. Phys. 45 5406
[13] Lee J Y, Lee K S and Kim S K 2007 Appl. Phys. Lett. 91 122513
[14] Bryan M T, Schrefl T, Atkinson D and Allwood D A 2008 J. Appl. Phys. 103 073906
[15] Glathe S, Berkov I, Mikolajick T and Mattheis R 2008 Appl. Phys. Lett. 93 162505
[16] Kunz A and Reiff S C 2008 Appl. Phys. Lett. 93 082503
[17] Seo S M, Lee K J, Jung S W and Lee H W 2010 Appl. Phys. Lett. 97 032507
[18] Piao H G, Shim J H, Lee S H, Djuhana D, Oh S K, Yu S C and Kim D H 2009 IEEE Trans. Magn. 45 3926
[19] Burn D M and Atkinson D 2013 Appl. Phys. Lett. 102 242414
[20] Yan M, Kákay A, Gliga S and Hertel R 2010 Phys. Rev. Lett. 104 057201
[21] Piao H G, Shim J H, Djuhana D and Kim D H 2013 Appl. Phys. Lett. 102 112405
[22] Donahue M and Porter D G 1999 OOM MF Users Guide, Version 1. 0 Interagency Report NISTIR 6376 (Gaithersburg: NIST)
[23] Gilbert T L 2004 IEEE Trans. Magn. 40 3443
[24] Hubert A and Sch?fer R 2009 Magnetic Domains: the Analysis of Magnetic Microstructures (Heidelberg: Springer)
[25] Shim J H, Piao H G, Lee S H, Oh S K, Yu S C, Han S K and Kim D H 2011 Appl. Phys. Lett. 99 142505
[26] Shim J H, Piao H G and Kim D H 2011 New Phys.: Sae Mulli (Korean J. Korean Phys. Soc.) 61 601
[27] Guslienko K Y, Novosad V, Otani Y, Shima H and Fukamichi K 2001 Appl. Phys. Lett. 78 3848
[28] Guslienko K Y 2006 Appl. Phys. Lett. 89 022510
[29] Knight R D Physics for Scientists and Engineers 2nd edn (Pearson Addison-Wesley, San Francisco 2008)
[30] Bramwell S T, Giblin S R, Calder S, Aldus R, Prabhakaran D and Fennell T 2009 Nature 461 956
Related articles from Frontiers Journals
[1] Qirui Cui, Jinghua Liang, Yingmei Zhu, Xiong Yao, and Hongxin Yang. Quantum Anomalous Hall Effects Controlled by Chiral Domain Walls[J]. Chin. Phys. Lett., 2023, 40(3): 087502
[2] Tian-Yi Zhang, Qing Yan, and Qing-Feng Sun. Constructing Low-Dimensional Quantum Devices Based on the Surface State of Topological Insulators[J]. Chin. Phys. Lett., 2021, 38(7): 087502
[3] Qiuyang Li, Suqin Xiong, Lina Chen, Kaiyuan Zhou, Rongxin Xiang, Haotian Li, Zhenyu Gao, Ronghua Liu, and Youwei Du. Spin-Wave Dynamics in an Artificial Kagome Spin Ice[J]. Chin. Phys. Lett., 2021, 38(4): 087502
[4] Tian-Run Feng, Hui-Zhen Kang, Lei Feng, Jia Yang, Tian-Hao Zhang, Feng Song, Jing-Jun Xu, Jian-Guo Tian, L. I. Ivleva. Noncolinear Second-Harmonic Generation Pairs and Their Scatterings in Nd$^{3+}$:SBN Crystals with Needle-Like Ferroelectric Domains[J]. Chin. Phys. Lett., 2018, 35(3): 087502
[5] LI Yi, XU Ben, HU Shen-Yang, LI Yu-Lan, LI Qiu-Lin, LIU Wei. Magnetization Reversal Process of Single Crystal α-Fe Containing a Nonmagnetic Particle[J]. Chin. Phys. Lett., 2015, 32(06): 087502
[6] LIU Kai-Huang, LU Zhi-Chao, LI De-Ren, LIU Tian-Cheng, ZHOU Shao-Xiong. Domain Structure and Magnetization Process in Short Glass-Coated Amorphous Microwires with Positive Magnetostriction[J]. Chin. Phys. Lett., 2012, 29(10): 087502
[7] LIN Jing, SHI Zhong, ZHOU Shi-Ming, ZHANG Xia, XIA Yun-Jie. Exchange Bias in NiCo/FeMn Bilayers with Stripe Domains[J]. Chin. Phys. Lett., 2009, 26(10): 087502
[8] SUN Hui-Yuan, HU Yun-Zhi, LIU Li-Hu. Influence of Temperature on Equilibrium Separation Between Vertical Bloch Lines in OHBs in Garnet Bubble Films[J]. Chin. Phys. Lett., 2009, 26(1): 087502
[9] LI Da-Shan, LIU De-An, ZHI Ya-Nan, QU Wei-Juan, LIU Li-Ren, ZHANG Juan. Red Laser-Induced Domain Inversion in MgO-Doped Lithium Niobate Crystals[J]. Chin. Phys. Lett., 2007, 24(4): 087502
[10] XIA Ai-Lin, CAO Jiang-Wei, TONG Liu-Niu, WEI Fu-Lin, YANG Zheng, HAN Bao-Shan. Magnetic Force Microscopy Study of Alternate Sputtered (001) Oriented L10 Phase FePt Films[J]. Chin. Phys. Lett., 2007, 24(1): 087502
[11] XIA Ai-Lin, FANG Yi-Kun, GUO Zhao-Hui, LI Wei, HAN Bao-Shan. Effect of Sm Volatilization on Magnetic Microstructures of Sintered Sm(Co,Fe,Cu,Zr)z Magnets at High Temperatures[J]. Chin. Phys. Lett., 2006, 23(5): 087502
[12] FANG Yi-Kun, CHANG Cheng-Wu, CHANG Wen-Cheng, XIA Ai-Lin, CHEN Qiang, GE Hong-Liang, HAN Bao-Shan. Magnetic and Crystalline Microstructures of Fe--Pt--B Nanocomposite Ribbons[J]. Chin. Phys. Lett., 2005, 22(7): 087502
[13] FANG Yi-Kun, DING Bo-Ming, PANG Zhi-Yong, WANG Bao-Yan, BAO Da-Xin, HAN Sheng-Hao, HAN Bao-Shan. Magnetic and Crystalline Microstructures of the Sr--La--Co M-type Ferrites by Magnetic Force Microscopy[J]. Chin. Phys. Lett., 2005, 22(4): 087502
[14] FANG Yi-Kun, ZHU Ming-Gang, GUO Yong-Quan, LI Wei, HAN Bao-Shan. Magnetic Microstructure of Sintered Nd-Fe-B Magnets Made from Casting Strips[J]. Chin. Phys. Lett., 2004, 21(8): 087502
[15] PANG Zhi-Yong, FANG Yi-Kun, CHANG Huang-Wei, HAN Sheng-Hao, HAN Bao-Shan, CHANG Wen-Cheng. Magnetic Microstructures of PryFe90-yB10(y = 8-11.76) Nanocrystalline Ribbons by Using Magnetic Force Microscopy[J]. Chin. Phys. Lett., 2003, 20(11): 087502
Viewed
Full text


Abstract