CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Growth of High-Quality Superconducting FeSe0.5Te0.5 Thin Films Suitable for Angle-Resolved Photoemission Spectroscopy Measurements via Pulsed Laser Deposition |
KONG Wan-Dong1, LIU Zhi-Guo1, WU Shang-Fei1, WANG Gang1, QIAN Tian1, YIN Jia-Xin1**, RICHARD Pierre1,2, YAN Lei1**, DING Hong1,2 |
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 2Collaborative Innovation Center of Quantum Matter, Beijing 100871
|
|
Cite this article: |
KONG Wan-Dong, LIU Zhi-Guo, WU Shang-Fei et al 2015 Chin. Phys. Lett. 32 087401 |
|
|
Abstract High-quality superconducting FeSe0.5Te0.5 films are epitaxially grown on different substrates by using the pulsed laser deposition method. By measuring the transport properties and surface morphology of films grown on single-crystal substrates of Al2O3 (0001), SrTiO3 (001), and MgO (001), as well as monitoring the real-time growth process on MgO substrates with reflection high energy electron diffraction, we find the appropriate parameters for epitaxial growth of high-quality FeSe0.5Te0.5 thin films suitable for angle-resolved photoemission spectroscopy measurements. We further report the angle-resolved photoemission spectroscopy characterization of the superconducting films. The clearly resolved Fermi surfaces and the band structure suggest a sample quality that is as good as that of high-quality single-crystals, demonstrating that the pulsed laser deposition method can serve as a promising technique for in situ preparation and manipulation of iron-based superconducting thin films, which may bring new prosperity to angle-resolved photoemission spectroscopy research on iron-based superconductors.
|
|
Received: 28 April 2015
Published: 02 September 2015
|
|
|
|
|
|
[1] Christen H M and Eres G 2008 J. Phys.: Condens. Matter 20 264005 [2] Heber J 2009 Nature 459 28 [3] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. USA United States Am. 105 14262 [4] Huang S X, Chien C L, Thampy V and Broholm C 2010 Phys. Rev. Lett. 104 217002 [5] Imai Y, Akiike T, Tanaka R, Takahashi H, Hanawa M, Tsukada I and Maeda A 2010 Physica C 470 1038 [6] Imai Y, Tanaka R, Akiike T, Hanawa M, Tsukada I and Maeda A 2010 Jpn. J. Appl. Phys. 49 023101 [7] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296 [8] Kumary T G, Baisnab D K, Janaki J, Mani A, Satya A T, Sarguna R M, Ajikumar P K, Tyagi A K and Bharathi A 2009 Supercond. Sci. Technol. 22 095018 [9] Miao H, Richard P, Tanaka Y, Nakayama K, Qian T, Umezawa K, Sato T, Xu Y M, Shi Y B, Xu N, Wang X P, Zhang P, Yang H B, Xu Z J, Wen J S, Gu G D, Dai X, Hu J P, Takahashi T and Ding H 2012 Phys. Rev. B 85 094506 [10] Pitcher M J, Parker D R, Adamson P, Herkelrath S J C, Boothroyd A T, Ibberson R M, Brunelli M and Clarke S J 2008 Chem. Commun. 5918 [11] Richard P, Sato T, Nakayama K, Takahashi T and Ding H 2011 Rep. Prog. Phys. 74 124512 [12] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006 [13] Sassa Y, Radovic M, Mansson M, Razzoli E, Cui X Y, Pailhes S, Guerrero S, Shi M, Willmott P R, Granozio F M, Mesot J, Norman M R and Patthey L 2011 Phys. Rev. B 83 140511 [14] Subedi A, Zhang L, Singh D J and Du M H 2008 Phys. Rev. B 78 134514 [15] Schlom D G, Chen L Q, Pan X, Schmehl A and Zurbuchen M A 2008 J. Am. Ceram. Soc. 91 2429 [16] Ye Z R, Zhang Y, Xie B P and Feng D L 2013 Chin. Phys. B 22 087407 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|