CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Thermal Analysis of Organic Light Emitting Diodes Based on Basic Heat Transfer Theory |
ZHANG Wen-Wen1**, WU Zhao-Xin2, LIU Ying-Wen3, DONG Jun1, YAN Xue-Wen1, HOU Xun2 |
1School of Electronic Engineering, Xi'an University of Post & Telecommunication, Xi'an 710121 2Key Laboratory for Physical Electronics and Devices of the Ministry of Education, & Key Laboratory of Photonics Technology for Information of Shaanxi Province, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049 3MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049
|
|
Cite this article: |
ZHANG Wen-Wen, WU Zhao-Xin, LIU Ying-Wen et al 2015 Chin. Phys. Lett. 32 087201 |
|
|
Abstract We investigate the thermal characteristics of standard organic light-emitting diodes (OLEDs) using a simple and clear 1D thermal model based on the basic heat transfer theory. The thermal model can accurately estimate the device temperature, which is linearly with electrical input power. The simulation results show that there is almost no temperature gradient within the OLED device working under steady state conditions. Furthermore, thermal analysis simulation results show that the surface properties (convective heat transfer coefficient and surface emissivity) of the substrate or cathode can significantly affect the temperature distribution of the OLED.
|
|
Received: 11 February 2015
Published: 02 September 2015
|
|
PACS: |
72.80.Le
|
(Polymers; organic compounds (including organic semiconductors))
|
|
85.60.Jb
|
(Light-emitting devices)
|
|
68.60.Dv
|
(Thermal stability; thermal effects)
|
|
|
|
|
[1] Tang C W and VanSlyke S A 1987 Appl. Phys. Lett. 51 913 [2] Qi X and Forrest S R 2011 J. Appl. Phys. 110 124516 [3] Zhang W, Wu Z, Liang S, Jiao B, Zhang X, Wang D, Hou X, Chen Z and Gong Q 2011 J. Phys. D: Appl. Phys. 44 155103 [4] Boroumand F A, Voigt M, Lidzey D G, Hammiche A and Hill G 2004 Appl. Phys. Lett. 84 4890 [5] Garditz C, Winnacker A, Schindler F and Paetzold R 2007 Appl. Phys. Lett. 90 103506 [6] Zhou X, He J, Liao L S, Lu M, Ding X M, Hou X Y, Xiao Zhang M, He X Q and Lee S T 2000 Adv. Mater. 12 265 [7] Tessler N, Harrison N T, Thomas D S and Friend R H 1998 Appl. Phys. Lett. 73 732 [8] Sturm J C, Wilson W and Iodice H 1998 IEEE J. Sel. Top. Quantum Electron. 4 75 [9] Park J W, Shin D C and Park S H 2011 Semicond. Sci. Technol. 26 034002 [10] Bergemann K J, Krasny R and Forrest S R 2012 Org. Electron. 13 1565 [11] Kwak K, Cho K and Kim S 2013 Opt. Express 21 29558 [12] Park J, Ham H and Park C 2011 Org. Electron. 12 227 [13] Choi S H, Lee T I I, Baik H K, Roh H H, Kwon O and Sun D 2008 Appl. Phys. Lett. 93 183301 [14] Zhu J, Liu M, Wu B and Hou X Y 2012 Chin. Phys. Lett. 29 097802 [15] Bai J J, Wu X M, Hua Y L, Mu X, Bi W T, Su Y J et al 2013 Chin. Phys. B 22 047806 [16] Mu X, Wu X M, Hua Y L, Jiao Z Q et al 2013 Chin. Phys. B 22 027805 [17] Lee J H, Wu M H, Chao C C, Chen H L and Leung M K 2005 Chem. Phys. Lett. 416 234 [18] Book K, Nikitenko V R, B ?ssler H and Elschner A 2001 J. Appl. Phys. 89 2690 [19] Sagar D M, Aoudjane S, Gaudet M, Aeppli G and Dalby P A 2013 Sci. Rep. 3 2130 [20] Ridouane E H, Hasnaoui M and Campo A 2006 Heat Mass Transfer R 42 214 [21] Liu S, Hua D, Zhao Y et al 2015 RSC. Adv. 5 1910 [22] Zhao Y Q, Huang C J, Ogundimu T et al 2007 Appl. Phys. Lett. 91 103109 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|