Chin. Phys. Lett.  2015, Vol. 32 Issue (08): 087201    DOI: 10.1088/0256-307X/32/8/087201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Thermal Analysis of Organic Light Emitting Diodes Based on Basic Heat Transfer Theory
ZHANG Wen-Wen1**, WU Zhao-Xin2, LIU Ying-Wen3, DONG Jun1, YAN Xue-Wen1, HOU Xun2
1School of Electronic Engineering, Xi'an University of Post & Telecommunication, Xi'an 710121
2Key Laboratory for Physical Electronics and Devices of the Ministry of Education, & Key Laboratory of Photonics Technology for Information of Shaanxi Province, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049
3MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049
Cite this article:   
ZHANG Wen-Wen, WU Zhao-Xin, LIU Ying-Wen et al  2015 Chin. Phys. Lett. 32 087201
Download: PDF(636KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the thermal characteristics of standard organic light-emitting diodes (OLEDs) using a simple and clear 1D thermal model based on the basic heat transfer theory. The thermal model can accurately estimate the device temperature, which is linearly with electrical input power. The simulation results show that there is almost no temperature gradient within the OLED device working under steady state conditions. Furthermore, thermal analysis simulation results show that the surface properties (convective heat transfer coefficient and surface emissivity) of the substrate or cathode can significantly affect the temperature distribution of the OLED.
Received: 11 February 2015      Published: 02 September 2015
PACS:  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
  85.60.Jb (Light-emitting devices)  
  68.60.Dv (Thermal stability; thermal effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/8/087201       OR      https://cpl.iphy.ac.cn/Y2015/V32/I08/087201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Wen-Wen
WU Zhao-Xin
LIU Ying-Wen
DONG Jun
YAN Xue-Wen
HOU Xun
[1] Tang C W and VanSlyke S A 1987 Appl. Phys. Lett. 51 913
[2] Qi X and Forrest S R 2011 J. Appl. Phys. 110 124516
[3] Zhang W, Wu Z, Liang S, Jiao B, Zhang X, Wang D, Hou X, Chen Z and Gong Q 2011 J. Phys. D: Appl. Phys. 44 155103
[4] Boroumand F A, Voigt M, Lidzey D G, Hammiche A and Hill G 2004 Appl. Phys. Lett. 84 4890
[5] Garditz C, Winnacker A, Schindler F and Paetzold R 2007 Appl. Phys. Lett. 90 103506
[6] Zhou X, He J, Liao L S, Lu M, Ding X M, Hou X Y, Xiao Zhang M, He X Q and Lee S T 2000 Adv. Mater. 12 265
[7] Tessler N, Harrison N T, Thomas D S and Friend R H 1998 Appl. Phys. Lett. 73 732
[8] Sturm J C, Wilson W and Iodice H 1998 IEEE J. Sel. Top. Quantum Electron. 4 75
[9] Park J W, Shin D C and Park S H 2011 Semicond. Sci. Technol. 26 034002
[10] Bergemann K J, Krasny R and Forrest S R 2012 Org. Electron. 13 1565
[11] Kwak K, Cho K and Kim S 2013 Opt. Express 21 29558
[12] Park J, Ham H and Park C 2011 Org. Electron. 12 227
[13] Choi S H, Lee T I I, Baik H K, Roh H H, Kwon O and Sun D 2008 Appl. Phys. Lett. 93 183301
[14] Zhu J, Liu M, Wu B and Hou X Y 2012 Chin. Phys. Lett. 29 097802
[15] Bai J J, Wu X M, Hua Y L, Mu X, Bi W T, Su Y J et al 2013 Chin. Phys. B 22 047806
[16] Mu X, Wu X M, Hua Y L, Jiao Z Q et al 2013 Chin. Phys. B 22 027805
[17] Lee J H, Wu M H, Chao C C, Chen H L and Leung M K 2005 Chem. Phys. Lett. 416 234
[18] Book K, Nikitenko V R, B ?ssler H and Elschner A 2001 J. Appl. Phys. 89 2690
[19] Sagar D M, Aoudjane S, Gaudet M, Aeppli G and Dalby P A 2013 Sci. Rep. 3 2130
[20] Ridouane E H, Hasnaoui M and Campo A 2006 Heat Mass Transfer R 42 214
[21] Liu S, Hua D, Zhao Y et al 2015 RSC. Adv. 5 1910
[22] Zhao Y Q, Huang C J, Ogundimu T et al 2007 Appl. Phys. Lett. 91 103109
Related articles from Frontiers Journals
[1] Sai Jiang, Lichao Peng, Xiaosong Du, Qinyong Dai, Jianhang Guo, Jianhui Gu, Jian Su, Ding Gu, Qijing Wang, Huafei Guo, Jianhua Qiu, and Yun Li. Large-Area Monolayer n-Type Molecular Semiconductors with Improved Thermal Stability and Charge Injection[J]. Chin. Phys. Lett., 2023, 40(3): 087201
[2] Yanjing Tang, Xianxi Yu, Shaobo Liu, Anran Yu, Jiajun Qin, Ruichen Yi, Yuan Pei, Chunqin Zhu, Xiaoyuan Hou. Hole Injection Enhancement of MoO$_{3}$/NPB/Al Composite Anode[J]. Chin. Phys. Lett., 2019, 36(12): 087201
[3] Ning-Ning Chen, Wan-Yi Tan, Dong-Yu Gao, Jian-Hua Zou, Jun-Zhe Liu, Jun-Biao Peng, Yong Cao, Xu-Hui Zhu. BiPh-$m$-BiDPO as a Hole-Blocking Layer for Organic Light-Emitting Diodes: Revealing Molecular Structure-Properties Relationship[J]. Chin. Phys. Lett., 2017, 34(7): 087201
[4] Rong-Hui Quan, Kai Zhou, Mei-Hua Fang, Wei-Ying Chi, Zhen-Long Zhang. Fast Measurement of Dielectric Conductivity for Space Application by Surface Potential Decay Method[J]. Chin. Phys. Lett., 2017, 34(6): 087201
[5] Min-Nan Guo, Shao-Wei Liu, Na Guo, Li-Ying Yang, Wen-Jing Qin, Shou-Gen Yin. Performance and Stability of Polymer Solar Cells Based on the Blends of Poly(3-Hexylthiophene) and Indene-C$_{60}$ Bis-Adduct[J]. Chin. Phys. Lett., 2016, 33(07): 087201
[6] Yuan-Yuan Hou, Jiang-Hong Li, Xiao-Xiang Ji, Ya-Feng Wu, Wei Fan, Igbari Femi. Highly Efficient and Stable Hybrid White Organic Light Emitting Diodes with Controllable Exciton Behavior by a Mixed Bipolar Interlayer[J]. Chin. Phys. Lett., 2016, 33(07): 087201
[7] Shuang Cheng, Jian-Qi Shen, Zhi-Qi Kou, Xiao-Ping Wang. Influence of Blocking Interlayer in Blue Organic Light-Emitting Diodes with Different Thicknesses of Emitting Layer and Interlayer[J]. Chin. Phys. Lett., 2016, 33(02): 087201
[8] JIAO Bo, YAO Li-Juan, WU Chun-Fang, DONG Hua, HOU Xun, WU Zhao-Xin. Room-Temperature Organic Negative Differential Resistance Device Using CdSe Quantum Dots as the ITO Modification Layer[J]. Chin. Phys. Lett., 2015, 32(11): 087201
[9] DING Lei, LI Huai-Kun, ZHANG Mai-Li, CHENG Jun, ZHANG Fang-Hui. High-Performance Hybrid White Organic Light-Emitting Diodes Utilizing a Mixed Interlayer as the Universal Carrier Switch[J]. Chin. Phys. Lett., 2015, 32(10): 087201
[10] ZHANG Hong-Mei, WANG Dan-Bei, WU Yuan-Wu, FANG Da, HUANG Wei. High-Efficiency Bottom-Emitting Organic Light-Emitting Diodes with Double Aluminum as Electrodes[J]. Chin. Phys. Lett., 2015, 32(10): 087201
[11] MU Ye, ZHANG Zhen-Song, WANG Hong-Bo, QU Da-Long, WU Yu-Kun, YAN Ping-Rui, LI Chuan-Nan, ZHAO Yi. Top-Emitting White Organic Light-Emitting Diodes Based on Cu as Both Anode and Cathode[J]. Chin. Phys. Lett., 2015, 32(09): 087201
[12] ZHANG Hong-Mei, WANG Dan-Bei, ZENG Wen-Jin, YAN Min-Nan. High-Efficiency Green Phosphorescent Organic Light-Emitting Diode Based on Simplified Device Structures[J]. Chin. Phys. Lett., 2015, 32(09): 087201
[13] XIANG Lan-Yi, YING Jun, HAN Jin-Hua, WANG Wei, XIE Wen-Fa. Solution-Processed High Mobility Top-Gate N-Channel Polymer Field-Effect Transistors[J]. Chin. Phys. Lett., 2015, 32(09): 087201
[14] ZHANG Ruo-Chuan, WANG Meng-Ying, YANG Li-Ying, QIN Wen-Jing, YIN Shou-Gen. Polymer Solar Cells Using a PEDOT:PSS/Cu Nanowires/PEDOT:PSS Multilayer as the Anode Interlayer[J]. Chin. Phys. Lett., 2015, 32(07): 087201
[15] LIU Wei, LIU Guo-Hong, LIU Yong, LI Bao-Jun, ZHOU Xiang. Improvement of Performance of Organic Light-Emitting Diodes with Both a MoO3 Hole Injection Layer and a MoO3 Doped Hole Transport Layer[J]. Chin. Phys. Lett., 2015, 32(07): 087201
Viewed
Full text


Abstract