Chin. Phys. Lett.  2015, Vol. 32 Issue (08): 087101    DOI: 10.1088/0256-307X/32/8/087101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Anisotropic Transport and Magnetic Properties of Charge-Density-Wave Materials RSeTe2 (R = La, Ce, Pr, Nd)
WANG Pei-Pei1, LONG Yu-Jia1,2, ZHAO Ling-Xiao1, CHEN Dong1,2, XUE Mian-Qi1, CHEN Gen-Fu1,3**
1Institute of Physics, and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190
2Department of Physics, Renmin University of China, Beijing 100872
3Collaborative Innovation Center of Quantum Matter, Beijing 100190
Cite this article:   
WANG Pei-Pei, LONG Yu-Jia, ZHAO Ling-Xiao et al  2015 Chin. Phys. Lett. 32 087101
Download: PDF(1164KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Single crystals of RSeTe2 (R = La, Ce, Pr, Nd) are synthesized using LiCl/RbCl flux. Transport and magnetic properties in the directions parallel and perpendicular to the ac plane are investigated. We find that the resistivity anisotropy ρ/ρ|| lies in the range 486–615 for different compounds at 2 K, indicating the highly two-dimensional character. In both the orientations, the charge-density-wave transitions start near TCDW=284(3) K, 316(3) K, 359(3) K for NdSeTe2, PrSeTe2, CeSeTe2, respectively, with a considerable increase in dc resistivity. While for LaSeTe2, no obvious resistivity anomaly is observed up to 380 K. The value of TCDW increases monotonically with the increasing lattice parameters. Below TCDW, slight anomalies can be observed in NdSeTe2, PrSeTe2 and CeSeTe2 with onset temperature at 193(3) K, 161(3) K, 108(3) K, respectively, decreasing as lattice parameters increase. Magnetic susceptibility measurements show that the valence state of rare earth ions are trivalence in these compounds. Antiferromagnetic-type magnetic order is formed in CeSeTe2 at 2.1 K, while no magnetic transition is observed in PrSeTe2 and NdSeTe2 down to 1.8 K.
Received: 14 April 2015      Published: 02 September 2015
PACS:  71.45.Lr (Charge-density-wave systems)  
  72.15.-v (Electronic conduction in metals and alloys)  
  75.30.Gw (Magnetic anisotropy)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/8/087101       OR      https://cpl.iphy.ac.cn/Y2015/V32/I08/087101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Pei-Pei
LONG Yu-Jia
ZHAO Ling-Xiao
CHEN Dong
XUE Mian-Qi
CHEN Gen-Fu
[1] Grüner G 1988 Rev. Mod. Phys. 60 1129
[2] Monceau P et al 1976 Phys. Rev. Lett. 37 602
[3] Dimasi E et al 1995 Phys. Rev. B 52 14516
[4] Malliakas C et al 2005 J. Am. Chem. Soc. 127 6510
[5] Dimasi E et al 1994 Chem. Mater. 6 1867
[6] Iyeiri Y et al 2003 Phys. Rev. B 67 144417
[7] Ru N and Fisher I R 2006 Phys. Rev. B 73 033101
[8] Friend R H and Yoffe A D 1987 Adv. Phys. 36 1
[9] Wilson J A and Yoffe A D 1969 Adv. Phys. 18 193
[10] Morosan E et al 2006 Nat. Phys. 2 544
[11] Hamlin J J et al 2009 Phys. Rev. Lett. 102 177002
[12] He J B et al 2013 arXiv:1301.3032[cond-mat.supr-con]
[13] Bednorz J G and Müller K A 1986 Z. Phys. B 64 189
[14] Chen G F et al 2008 Phys. Rev. Lett. 100 247002
[15] Jun Z et al 2008 Nat. Mater. 7 953
[16] Bottcher P et al 2000 Z. Kristallogr.all. 215 246
[17] Patschke R and Kanatzidis M G 2002 Phys. Chem. Chem. Phys. 4 3266
[18] Doert T et al 2003 Chem. Eur. J. 9 5865
[19] Tsinde B P and Doert T 2005 Solid State Sci. 7 573
[20] Wang P P et al (unpublished)
[21] Prokofiev A V et al 1995 J. Alloys Compd. 219 172
[22] Ru N et al 2008 Phys. Rev. B 77 035114
[23] Williams G and Hirstet L L 1969 Phys. Rev. 185 407
[24] Mizushima T et al 1999 J. Phys. Soc. Jpn. 68 637
[25] Monachesi P et al 1994 Phys. Rev. B 50 1013
Related articles from Frontiers Journals
[1] Xuedong Xie, Dongjing Lin, Li Zhu, Qiyuan Li, Junyu Zong, Wang Chen, Qinghao Meng, Qichao Tian, Shao-Chun Li, Xiaoxiang Xi, Can Wang, and Yi Zhang. Charge Density Wave and Electron-Phonon Interaction in Epitaxial Monolayer NbSe$_{2}$ Films[J]. Chin. Phys. Lett., 2021, 38(10): 087101
[2] Chao Mu, Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Hechang Lei, Zheng Li, and Jianlin Luo. S-Wave Superconductivity in Kagome Metal CsV$_{3}$Sb$_{5}$ Revealed by $^{121/123}$Sb NQR and $^{51}$V NMR Measurements[J]. Chin. Phys. Lett., 2021, 38(7): 087101
[3] Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Yang Fu , Shaohua Yan , and Hechang Lei. Superconductivity and Normal-State Properties of Kagome Metal RbV$_{3}$Sb$_{5}$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(3): 087101
[4] J. E. Taylor, Z. Zhang, G. Cao, L. H. Haber, R. Jin, E. W. Plummer. Electronic Phase Transition of IrTe$_{2}$ Probed by Second Harmonic Generation[J]. Chin. Phys. Lett., 2018, 35(9): 087101
[5] Cong-Cong Fan, Ji-Shan Liu, Kai-Li Zhang, Wan-Ling Liu, Xiang-Le Lu, Zheng-Tai Liu, Dong Wu, Zhong-Hao Liu, Da-Wei Shen, Li-Xing You. Two Gaps in Semiconducting EuSbTe$_3$ Studied by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2018, 35(7): 087101
[6] Lin-Lin Wei, Shuai-Shuai Sun, Kai Sun, Yu Liu, Ding-Fu Shao, Wen-Jian Lu, Yu-Ping Sun, Huan-Fang Tian, Huai-Xin Yang. Charge Density Wave States and Structural Transition in Layered Chalcogenide TaSe$_{2-x}$Te$_{x}$[J]. Chin. Phys. Lett., 2017, 34(8): 087101
[7] Xing-Yuan Hou, Ya-Dong Gu, Zong Wang, Hai Zi, Xiang-De Zhu, Meng-Di Zhang , Chun-Hong Li, Cong Ren, Lei Shan. Proximity-Induced Superconductivity in New Superstructures on 2H-NbSe$_2$ Surface[J]. Chin. Phys. Lett., 2017, 34(7): 087101
[8] Xiao-Kun Zhao, Yuan Yao, Pei-Lin Lang, Hong-Lian Guo, Xi Shen, Yan-Guo Wang, Ri-Cheng Yu. Absorption Range and Energy Shift of Surface Plasmon in Au Monomer and Dimer[J]. Chin. Phys. Lett., 2016, 33(02): 087101
[9] WANG Pei-Pei, XUE Mian-Qi, LONG Yu-Jia, ZHAO Ling-Xiao, CAI Yao, YANG Huai-Xin, LI Jian-Qi, REN Zhi-An, CHEN Gen-Fu. Superconductivity in Pd-Intercalated Ternary Rare-Earth Polychalcogenide NdSeTe2[J]. Chin. Phys. Lett., 2015, 32(11): 087101
[10] FAN Guo-Zhi, CHEN Rong-Yan, WANG Nan-Lin, LUO Jian-Lin. 31P Nuclear Magnetic Resonance of Charge-Density-Wave Transition in a Single Crystal of RuP[J]. Chin. Phys. Lett., 2015, 32(07): 087101
[11] CAO Yu-Fei, CAI Kai-Ming, LI Li-Jun, LU Wen-Jian, SUN Yu-Ping, WANG Kai-You. Transport and Capacitance Properties of Charge Density Wave in Few-Layer 2H–TaS2 Devices[J]. Chin. Phys. Lett., 2014, 31(07): 087101
[12] WU Yue, DONG Xiao-Li, MA Ming-Wei, YANG Huai-Xin, ZHANG Chao, ZHOU Fang, ZHOU Xing-Jiang, ZHAO Zhong-Xian. Two Superconducting Phases and Their Characteristics in Layered BaTi2(Sb1?xBix)2O with x=0.16[J]. Chin. Phys. Lett., 2014, 31(07): 087101
[13] WANG Qing-Bo, XU Xiang-Fan, TAO Qian, WANG Hong-Tao, XU Zhu-An. Metal--Insulator Transition in Ca-Doped Sr14-xCaxCu24O41 Systems Probed by Thermopower Measurements[J]. Chin. Phys. Lett., 2008, 25(5): 087101
[14] LI Da-Hua, XIONG Rui, WANG Jun-Feng, LI Chang-Zhen, YIN Di, YI Fan, TANG Wu-Feng, SHI Jing,. The Second Threshold Field of Charge-Density-Wave Conductor Rb0.3MoO3 in High Temperature Range[J]. Chin. Phys. Lett., 2005, 22(5): 087101
[15] WANG Wei-Zhong, YAO Kai-Lun. Exact Solution of an Extended Hubbard Model with Electron-Lattice Interaction for an Organic Ferromagnetic Polymer[J]. Chin. Phys. Lett., 2002, 19(2): 087101
Viewed
Full text


Abstract