Chin. Phys. Lett.  2015, Vol. 32 Issue (08): 086801    DOI: 10.1088/0256-307X/32/8/086801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Thermal Conductance of Cu and Carbon Nanotube Interface Enhanced by a Graphene Layer
HUANG Zheng-Xing1**, WANG Li-Ying1, BAI Su-Yuan2, TANG Zhen-An1
1School of Electronic Science and Technology, Dalian University of Technology, Dalian 116024
2School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029
Cite this article:   
HUANG Zheng-Xing, WANG Li-Ying, BAI Su-Yuan et al  2015 Chin. Phys. Lett. 32 086801
Download: PDF(708KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Thermal conductances between Cu and graphene covered carbon nanotubes (gCNTs) are calculated by molecular dynamics simulations. The results show that the thermal conductance is about ten times larger than that of Cu-CNT interface. The enhanced thermal conductance is due to the larger contact area introduced by the graphene layer and the stronger thermal transfer ability of the Cu-gCNT interface. From the linear increasing thermal conductance with the increasing total contact area, an effective contact area of such an interface can be defined.
Received: 17 April 2015      Published: 02 September 2015
PACS:  68.35.-p (Solid surfaces and solid-solid interfaces: structure and energetics)  
  65.90.+i (Other topics in thermal properties of condensed matter)  
  68.60.Dv (Thermal stability; thermal effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/8/086801       OR      https://cpl.iphy.ac.cn/Y2015/V32/I08/086801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Zheng-Xing
WANG Li-Ying
BAI Su-Yuan
TANG Zhen-An
[1] Prasher R 2006 Proc. IEEE 94 1571
[2] Xu J and Fisher T S 2006 Int. J. Heat Mass Transfer 49 1658
[3] Amama P B, Cola B A, Sands T D, Xu X F and Fisher T S 2007 Nanotechnology 18 385303
[4] Cross R, Cola B A, Fisher T S, Xu X F, Gall K and Graham S 2010 Nanotechnology 21 445705
[5] Gao Z, Zhang K and Yue M 2010 11th International Conference on Electronic Packaging Technology and High Density Packaging p 1401
[6] Wang H, Feng J Y, Hu X J and Ng K M 2010 Chem. Eng. Sci. 65 1101
[7] Hodson S L, Bhuvana T, Cola B A, Xu X, Kulkarni G U and Fisher T S 2011 J. Electr. Packaging 133 020907
[8] Barako M T, Gao Y, Marconnet A M, Asheghi M and Goodson K E 2012 ITherm, 13th IEEE Intersociety Conference 1225
[9] Chen H, Chen M, Di J, Xu G, Li H and Li Q 2012 J. Phys. Chem. C 116 3903
[10] McNamara A J, Joshi Y and Zhang Z M 2012 Int. J. Therm Sci. 62 2
[11] Shahil K M F and Balandin A A 2012 Solid State Commun. 152 1331
[12] Wang J, Xiong G, Gu M, Zhang X and Liang J 2009 Chin. Phys. 58 4536
[13] Marconnet A M, Panzer M A and Goodson K E 2013 Rev. Mod. Phys. 85 1295
[14] Wang R, Hong T and Xe Y Q 2015 Acs Appl. Mater. Interfaces 7 5233
[15] Kumar A, Maschmann M R, Hodson S L, Baur J and Fisher T S 2015 Carbon 84 236
[16] Fan Z J, Yan J, Zhi L J, Zhang Q, Wei T, Feng J, Zhang M L, Qian W Z and Wei F 2010 Adv. Mater. 22 3723
[17] Tersoff J 1989 Phys. Rev. B 39 5566
[18] Choi W, Kang J and Hwang H 2003 Phys. Rev. B 68 193405
[19] Guo Y and Guo W 2006 Nanotechnology 17 4726
[20] Huang Z X and Tang Z A 2006 Physica B 373 291
[21] Wang Y, Ruan X L and Roy A K 2012 Phys. Rev. B 85 205311
Related articles from Frontiers Journals
[1] Hexu Zhang, Yuanhao Lyu, Wenqi Hu, Lan Chen, Yi-Qi Zhang, and Kehui Wu. Dehydrogenation Induced Formation of Chiral Core-Shell Arrays of Melamine on Ag(111)[J]. Chin. Phys. Lett., 2022, 39(11): 086801
[2] Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. Moderate-Temperature Near-Field Thermophotovoltaic Systems with Thin-Film InSb Cells[J]. Chin. Phys. Lett., 2021, 38(2): 086801
[3] Ye Tian, Xiaodong Yuan , Dongxia Hu , Wanguo Zheng , and Wei Han . Molecular Dynamics Simulations of the Interface between Porous and Fused Silica[J]. Chin. Phys. Lett., 2020, 37(10): 086801
[4] Quanyin Tang, Ji-Hui Yang, Zhi-Pan Liu, and Xin-Gao Gong. Directly Determining the Interface Structure and Band Offset of a Large-Lattice-Mismatched CdS/CdTe Heterostructure[J]. Chin. Phys. Lett., 2020, 37(9): 086801
[5] Qing Han, Qun Cai. Suppressing Effects of Ag Wetting Layer on Surface Conduction of Er Silicide/Si(001) Nanocontacts[J]. Chin. Phys. Lett., 2018, 35(8): 086801
[6] LI Jing, YANG Shen-Yuan, LI Shu-Shen. N-Doped Zigzag Graphene Nanoribbons on Si(001): a First-Principles Calculation[J]. Chin. Phys. Lett., 2015, 32(07): 086801
[7] LI Jing, YANG Shen-Yuan, LI Shu-Shen. Structural and Electronic Properties of Zigzag Graphene Nanoribbons on Si(001) Substrates[J]. Chin. Phys. Lett., 2015, 32(02): 086801
[8] ZHANG Li-Sheng, FANG Yan, WANG Pei-Jie. Surface Enhanced Raman Scattering Characterization of the ZnO Films Modified with Silver Quantum Dot[J]. Chin. Phys. Lett., 2012, 29(11): 086801
[9] ZHANG Yang, LI Xue-Hong, PENG Cheng-Xiao. Modification of Photoluminescence Properties of ZnO Island Films by Localized Surface Plasmons[J]. Chin. Phys. Lett., 2012, 29(10): 086801
[10] WANG Ying, SONG Zhong-Xiao, ZHANG Mi-Lin. Performance Improved by Incorporating of Ru Atoms into Zr-Si Diffusion Barrier for Cu Metallization[J]. Chin. Phys. Lett., 2012, 29(9): 086801
[11] LI Deng-Feng **, GUO Zhi-Cheng, LI Bo-Lin, DONG Hui-Ning, XIAO Hai-Yan . Structural and Electronic Properties of Sulfur-Passivated InAs(001) ( 2×6 ) Surface[J]. Chin. Phys. Lett., 2011, 28(8): 086801
[12] HUANG Hai-Chao, WANG Hai-Bo, YAN Dong-Hang. Heterojunction Effect in Weak Epitaxy Growth Thin Films Investigated by Kelvin Probe Force Microscopy[J]. Chin. Phys. Lett., 2010, 27(8): 086801
[13] LI Deng-Feng, XIAO Hai-Yan, XUE Shu-Wen, YANG Li, ZU Xiao-Tao. Surface Structure and Electronic Property of InP(001)-(2×1)S Surface: A First-Principles Study[J]. Chin. Phys. Lett., 2010, 27(4): 086801
[14] YUN Jiang-Ni, ZHANG Zhi-Yong, YAN Jun-Feng, ZHANG Fu-Chun. First Principles Study of Adsorption and Reaction of CO on SrTiO3 (100) Surface: the Role of Surface Oxygen Vacancies[J]. Chin. Phys. Lett., 2010, 27(1): 086801
[15] ZHOU Li-Jun, GUO Jian-Gang, ZHAO Ya-Pu. Size- and Temperature-Dependent Thermal Expansion Coefficient of a Nanofilm[J]. Chin. Phys. Lett., 2009, 26(6): 086801
Viewed
Full text


Abstract