Chin. Phys. Lett.  2015, Vol. 32 Issue (08): 085203    DOI: 10.1088/0256-307X/32/8/085203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Positron-Acoustic Shock Waves in a Degenerate Multi-Component Plasma
Shah M. G.1**, Hossen M. R.2, Sultana S.1, Mamun A. A.1
1Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
2 Department of Natural Sciences, Daffodil International University, Dhanmondi, Dhaka-1207, Bangladesh
Cite this article:   
Shah M. G., Hossen M. R., Sultana S. et al  2015 Chin. Phys. Lett. 32 085203
Download: PDF(997KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A theoretical investigation on the propagation of positron-acoustic shock waves (PASWs) in an unmagnetized, collisionless, dense plasma (containing non-relativistic inertial cold positrons, non-relativistic or ultra-relativistic degenerate electron and hot positron fluids and nondegenerate positively charged immobile ions) is carried out by employing the reductive perturbation method. The Burgers equation and its stationary shock wave solution are derived and numerically analyzed. It is observed that the relativistic effect (i.e., the presence of non/ultra-relativistic electrons and positrons) and the plasma particle number densities play vital roles in the propagation of PASWs. The implications of our results in space and interstellar compact objects including non-rotating white dwarfs, neutron stars, etc. are briefly discussed.
Received: 06 November 2014      Published: 02 September 2015
PACS:  52.27.Ny (Relativistic plasmas)  
  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
  52.35.Tc (Shock waves and discontinuities)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/8/085203       OR      https://cpl.iphy.ac.cn/Y2015/V32/I08/085203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shah M. G.
Hossen M. R.
Sultana S.
Mamun A. A.
[1] Tribeche M, Aoutou K, Younsi S and Amour R 2009 Phys. Plasmas 16 072103
[2] Sahu B 2010 Phys. Scr. 82 065504
[3] Popel S I, Vladimirov S V and Shukla P K 1995 Phys. Plasmas 2 716
[4] Tribeche M 2010 Phys. Plasmas 17 042110
[5] Chawla J K, Mishra M K and Tiwari R S 2013 Astrophys. Space Sci. 347 283
[6] Bulanov S S, Fedotov A M and Pegoraro F 2005 Phys. Rev. E 71 016404
[7] Nejoh Y N 1996 Phys. Scr. 49 967
[8] Surko C M, Leventhal M and Passner A 1989 Phys. Rev. Lett. 62 901
[9] Wineland D J, Weimer C S and Bollinger J J 1993 Hyperfine Interact. 76 115
[10] Michel F C 1991 Theory of Neutron Star Magnetosphere (Chicago: Chicago University Press)
[11] Shapiro S L and Teukolsky S A 1983 Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects (New York: John Wiley & Sons)
[12] Michel F C 1982 Rev. Mod. Phys. 54 1
[13] Miller H R and Wiita P J 1987 Active Galactic Nuclei (Berlin: Springer)
[14] Burns M L, Harding A K and Ramaty R 1983 Positron-electron Pairs in Astrophysics (New York: American Institute of Physics)
[15] Rees M J 1971 Nature 229 312
[16] Khan S A and Wazir Z 2013 Chin. Phys. B 22 025201
[17] Chandrasekhar S 1931 Philos. Mag. 11 592
[18] Chandrasekhar S 1931 Astrophys. J. 74 81
[19] Chandrasekhar S 1935 Mon. Not. R. Astron. Soc. 95 207
[20] Koester D and Chanmugam G 1990 Rep. Prog. Phys. 53 837
[21] Hossen M R and Mamun A A 2015 Braz. J. Phys. 45 200
[22] Hossen M R, Hossen M A, Sultana S and Mamun A A 2015 Astrophys. Space Sci. 357 34
[23] Hossen M R, Ema S A and Mamun A A 2014 Commun. Theor. Phys. 62 888
[24] Hossen M R, Nahar L and Mamun A A 2014 J. Korean Phys. Soc. 65 1863
[25] Mamun A A and Shukla P K 2010 Phys. Lett. A 374 4238
[26] Mamun A A and Shukla P K 2010 Phys. Plasmas 17 104504
[27] Roy N, Tasnim S and Mamun A A 2012 Phys. Plasmas 19 033705
[28] Liu T, Wang Y and Lu Y 2015 Chin. Phys. B 24 025202
[29] Ali S, Moslem W M, Shukla P K and Schlickeiser R 2007 Phys. Plasmas 14 082307
[30] Hossen M R, Nahar L, Sultana S and Mamun A A 2014 Astrophys. Space Sci. 353 123
[31] Hossen M R 2014 Nonlinear Excitations Degenerate Quantum Plasmas (Germany: Lap-lambert Academic Publishing)
[32] Akhter T, Hossain M M and Mamun A A 2013 Commun. Theor. Phys. 59 745
[33] Akhter T, Hossain M M and Mamun A A 2013 IEEE Trans. Plasma Sci. 41 1607
[34] Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F and Malka V 2004 Nature 431 541
[35] Marklund M and Shukla P K 2006 Rev. Mod. Phys. 78 591
[36] Dyakonov M I and Shur M S 1996 IEEE Trans. Electron Devices 43 1640
[37] Markowich P A, Ringhofer C A and Schmeiser C 1990 Semiconductor Equations (New York: Springer-Verlag)
[38] Zeba I, Moslem W M and Shukla P K 2012 Astrophys. J. 750 72
[39] Shah Asif, Mahmood S and Haque Q 2011 Phys. Plasmas 18 114501
[40] Hossen M R and Mamun A A 2014 Braz. J. Phys. 44 673
[41] Hossen M R, Nahar L and Mamun A A 2014 J. Astrophys. 2014 653065
[42] Hossen M A, Hossen M R and Mamun A A 2014 Braz. J. Phys. 44 703
[43] Hossen M R, Nahar L and Mamun A A 2014 Braz. J. Phys. 44 638
[44] Hossen M R and Mamun A A 2015 Plasma Sci. Technol. 17 177
[45] Shah M G, Hossen M R and Mamun A A 2015 J. Korean Phys. Soc. 66 1239
[46] Masood W, Mirza M Arshad and Hanif M 2008 Phys. Plasmas 15 072106
[47] El-Shamy E F, El-Taibany W F, El-Shewy E K and El-Shorbagy K H 2012 Astrophys. Space Sci. 338 279
[48] Misra A P and Samanta S 2008 Phys. Plasmas 15 122307
[49] Sah O P and Manta J 2009 Phys. Plasmas 16 032304
[50] Zhu Zhenni, Wu Zhengwei, Li Chunhua and Yang Weihong 2014 Plasma Sci. Technol. 16 995
[51] Chaudhary R, Tsintsadze N L and Shukla P K 2010 J. Plasma Phys. 76 875
[52] Maxon S and Viecelli J 1974 Phys. Rev. Lett. 32 4
[53] Hossen M R, Nahar L, Sultana S and Mamun A A 2014 High Energy Density Phys. 13 13
[54] Hossen M R, Nahar L and Mamun A A 2014 Phys. Scr. 89 105603
Related articles from Frontiers Journals
[1] Zhong-Kui Kuang, Li-Hong Cheng, Pan-Fei Geng, Rong-An Tang, Ju-Kui Xue. Relativistic Spherical Plasma Waves in a Collisional and Warm Plasma[J]. Chin. Phys. Lett., 2018, 35(12): 085203
[2] Chun-Hua Li, Shao-Wei Wang, Yun-Hao Liu, Zhen-Wei Xia, Xiao-Hui Zhang, Dan-Dan Zou. Extraordinary Electromagnetic Waves in Weakly Relativistic Degenerate Spin-1/2 Magnetized Quantum Plasmas[J]. Chin. Phys. Lett., 2018, 35(4): 085203
[3] ZHOU Qing-Hua, JIANG Bin, SHI Xiang-Hua, LI Jun-Qiu. Whistler-Mode Waves Growth by a Generalized Relativistic Kappa-Type Distribution[J]. Chin. Phys. Lett., 2009, 26(2): 085203
[4] XIAO Fu-Liang, ZHOU Qing-Hua, HE Hui-Yong. Modelling Energetic Electrons by a Kappa-Loss-Cone Distribution at Geostationary Orbit[J]. Chin. Phys. Lett., 2007, 24(7): 085203
[5] AN Wei-Ke, QIU Xi-Jun, SHI Chun-Hua, ZHU Zhi-Yuan. Dependence of the Average Lorentz Factor on Temperature in Relativistic Plasmas[J]. Chin. Phys. Lett., 2005, 22(5): 085203
[6] CAI Hong-Bo, ZHU Shao-Ping. Stimulated Raman Scattering in Bi-temperature Vlasov Plasma[J]. Chin. Phys. Lett., 2004, 21(5): 085203
[7] MA Jin-Yi, QIU Xi-Jun, ZHU Zhi-Yuan. Collective Oscillation of Relativistic Electrons in Hot Plasma [J]. Chin. Phys. Lett., 2003, 20(8): 085203
Viewed
Full text


Abstract