Chin. Phys. Lett.  2015, Vol. 32 Issue (07): 077402    DOI: 10.1088/0256-307X/32/7/077402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Surface State Bands in Superconducting (PtxIr1?x)Te2
KONG Wan-Dong1, MIAO Hu1, QIAN Tian1**, WANG Zhi-Jun1, XU Gang1, FANG Ai-Fang1, HUANG Yao-Bo1, ZHANG Peng1, SHI Xun1, FANG Zhong1,2, DAI Xi1,2, RICHARD Pierre1,2, WANG Nan-Lin1,2,3, DING Hong1,2**
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2Collaborative Innovation Center of Quantum Matter, Beijing 100871
3International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871
Cite this article:   
KONG Wan-Dong, MIAO Hu, QIAN Tian et al  2015 Chin. Phys. Lett. 32 077402
Download: PDF(1538KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Angle-resolved photoemission spectroscopy is performed to study the bulk and surface electronic structures of non-superconducting IrTe2 and superconducting Pt0.05Ir0.95Te2. In addition to the bulk electronic bands predicted by the local density approximation calculations, we observe two Dirac cone-like bands at the Brillouin zone center, which are non-dispersive along kz, suggesting that the extra bands are surface state bands. As the experimental results are well consistent with the ab initio calculations of surface states, the parity analysis proves that these surface state bands are topologically trivial and thus exclude (PtxIr1?x)Te2 as a possible topological superconductor candidate.
Received: 16 March 2015      Published: 30 July 2015
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.70.Xa (Pnictides and chalcogenides)  
  74.20.Mn (Nonconventional mechanisms)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/7/077402       OR      https://cpl.iphy.ac.cn/Y2015/V32/I07/077402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
KONG Wan-Dong
MIAO Hu
QIAN Tian
WANG Zhi-Jun
XU Gang
FANG Ai-Fang
HUANG Yao-Bo
ZHANG Peng
SHI Xun
FANG Zhong
DAI Xi
RICHARD Pierre
WANG Nan-Lin
DING Hong
[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[4] Brouwer P W 2012 Science 336 989
[5] Fu L and Berg E 2010 Phys. Rev. Lett. 105 097001
[6] Sasaki S et al 2012 Phys. Rev. Lett. 109 217004
[7] Hor Y S et al 2010 Phys. Rev. Lett. 104 057001
[8] Wray L A et al 2010 Nat. Phys. 6 855
[9] Tanaka Y et al 2012 Phys. Rev. B 85 125111
[10] Kriener M et al 2011 Phys. Rev. Lett. 106 127004
[11] Zabolotnyy V B et al 2012 New J. Phys. 14 063039
[12] Liu S Y et al 2012 Phys. Rev. B 86 165112
[13] Nelson K D et al 2004 Science 306 1151
[14] Luke G M et al 1998 Nature 394 558
[15] Sato T, Tanaka Y, Nakayama K, Souma S, Takahashi T, Sasaki S, Ren Z, Taskin A A, Segawa K and Ando Y 2013 Phys. Rev. Lett. 110 206804
[16] Wang H, Wang H C, Liu H W, Lu H, Yang W H, Jia S, Liu X J, Xie X C, Wei J and Wang J 2015 arXiv:1501.00418[cond-mat.supr-con]
[17] Yang J J, Choi Y J, Oh Y S, Horibe A, Kim K, Min B I and Cheong S W 2012 Phys. Rev. Lett. 108 116402
[18] Fang A F, Xu G, Dong T, Zhang P and Wang N L 2013 Sci. Rep. 3 1153
[19] Kiswandhi A, Brooks J S, Cao H B, Yan J Q, Mandrus D, Jiang Z and Zhou H D 2013 Phys. Rev. B 87 121107(R)
[20] Ootsuki D, Wakisaka Y, Pyon S, Kudo K, Nohara M, Arita M, Anzai H, Namatame H, Taniguchi M, Saini N L and Mizokawa T 2012 Phys. Rev. B 86 014519
[21] Yu D J, Yang F, Miao L, Han C Q, Yao M Y, Zhu F, Song Y R, Zhang K F, Ge J F, Yao X, Zou Z Q, Li Z J, Gao B F, Liu C, Guan D D, Gao C L, Qian D and Jia J F 2014 Phys. Rev. B 89 100501
[22] Zhang P, Richard P, Qian T, Xu Y M, Dai X and Ding H 2011 Rev. Sci. Instrum. 82 043712
[23] Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847
[24] Souza I, Marzari N and Vanderbilt D 2001 Phys. Rev. B 65 035109
[25] Sancho M P L, Sancho J M L and Rubio J 1984 J. Phys. F 14 1205
[26] Sancho M P L, Sancho J M L, Sancho J M L and Rubio J 1985 J. Phys. F 15 1581
[27] Zhou X D and Wang Y Y Private communication
Related articles from Frontiers Journals
[1] Wenjing Liu, Heming Zha, Gen-Da Gu, Xiaoping Shen, Mao Ye, and Shan Qiao. Anisotropy of Electronic Spin Texture in the High-Temperature Cuprate Superconductor Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$[J]. Chin. Phys. Lett., 2023, 40(3): 077402
[2] Yuan Wang, Yixuan Liu, Zhanyang Hao, Wenjing Cheng, Junze Deng, Yuxin Wang, Yuhao Gu, Xiao-Ming Ma, Hongtao Rong, Fayuan Zhang, Shu Guo, Chengcheng Zhang, Zhicheng Jiang, Yichen Yang, Wanling Liu, Qi Jiang, Zhengtai Liu, Mao Ye, Dawei Shen, Yi Liu, Shengtao Cui, Le Wang, Cai Liu, Junhao Lin, Ying Liu, Yongqing Cai, Jinlong Zhu, Chaoyu Chen, and Jia-Wei Mei. Flat Band and $\mathbb{Z}_2$ Topology of Kagome Metal CsTi$_{3}$Bi$_{5}$[J]. Chin. Phys. Lett., 2023, 40(3): 077402
[3] Fazhi Yang, Giao Ngoc Phan, Renjie Zhang, Jin Zhao, Jiajun Li, Zouyouwei Lu, John Schneeloch, Ruidan Zhong, Mingwei Ma, Genda Gu, Xiaoli Dong, Tian Qian, and Hong Ding. Fe$_{1+y}$Te$_{x}$Se$_{1-x}$: A Delicate and Tunable Majorana Material[J]. Chin. Phys. Lett., 2023, 40(1): 077402
[4] Yuanyuan Yang, Qisi Wang, Shaofeng Duan, Hongliang Wo, Chaozhi Huang, Shichong Wang, Lingxiao Gu, Dong Qian, Jun Zhao, and Wentao Zhang. Unusual Band Splitting and Superconducting Gap Evolution with Sulfur Substitution in FeSe[J]. Chin. Phys. Lett., 2022, 39(5): 077402
[5] Yi Zhao, Jun Deng, A. Bhattacharyya, D. T. Adroja, P. K. Biswas, Lingling Gao, Weizheng Cao, Changhua Li, Cuiying Pei, Tianping Ying, Hideo Hosono, and Yanpeng Qi. Superconductivity in the Layered Cage Compound Ba$_{3}$Rh$_{4}$Ge$_{16}$[J]. Chin. Phys. Lett., 2021, 38(12): 077402
[6] Jiao-Jiao Song, Yang Luo, Chen Zhang, Qi-Yi Wu, Tomasz Durakiewicz, Yasmine Sassa, Oscar Tjernberg, Martin Månsson, Magnus H. Berntsen, Yin-Zou Zhao, Hao Liu, Shuang-Xing Zhu, Zi-Teng Liu, Fan-Ying Wu, Shu-Yu Liu, Eric D. Bauer, Ján Rusz, Peter M. Oppeneer, Ya-Hua Yuan, Yu-Xia Duan, and Jian-Qiao Meng. The 4$f$-Hybridization Strength in Ce$_m$$M$$_n$In$_{3m+2n}$ Heavy-Fermion Compounds Studied by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2021, 38(10): 077402
[7] Zhe Huang, Xianbiao Shi, Gaoning Zhang, Zhengtai Liu, Soohyun Cho, Zhicheng Jiang, Zhonghao Liu, Jishan Liu, Yichen Yang, Wei Xia, Weiwei Zhao, Yanfeng Guo, and Dawei Shen. Photoemission Spectroscopic Evidence of Multiple Dirac Cones in Superconducting BaSn$_3$[J]. Chin. Phys. Lett., 2021, 38(10): 077402
[8] Xuedong Xie, Dongjing Lin, Li Zhu, Qiyuan Li, Junyu Zong, Wang Chen, Qinghao Meng, Qichao Tian, Shao-Chun Li, Xiaoxiang Xi, Can Wang, and Yi Zhang. Charge Density Wave and Electron-Phonon Interaction in Epitaxial Monolayer NbSe$_{2}$ Films[J]. Chin. Phys. Lett., 2021, 38(10): 077402
[9] Yu Dong, Yangyang Lv, Zuyu Xu, M. Abdel-Hafiez, A. N. Vasiliev, Haipeng Zhu, Junfeng Wang, Liang Li, Wanghao Tian, Wei Chen, Song Bao, Jinghui Wang, Yueshen Wu, Yulong Huang, Shiliang Li, Jie Yuan, Kui Jin, Labao Zhang, Huabing Wang, Shun-Li Yu, Jinsheng Wen, Jian-Xin Li, Jun Li, and Peiheng Wu. Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 077402
[10] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 077402
[11] Yongqing Cai, Tao Xie, Huan Yang, Dingsong Wu, Jianwei Huang, Wenshan Hong, Lu Cao, Chang Liu, Cong Li, Yu Xu, Qiang Gao, Taimin Miao, Guodong Liu, Shiliang Li, Li Huang, Huiqian Luo, Zuyan Xu, Hongjun Gao, Lin Zhao, and X. J. Zhou. Common ($\pi$,$\pi$) Band Folding and Surface Reconstruction in FeAs-Based Superconductors[J]. Chin. Phys. Lett., 2021, 38(5): 077402
[12] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 077402
[13] Qiang Gao, Lin Zhao, Cheng Hu, Hongtao Yan, Hao Chen, Yongqing Cai, Cong Li, Ping Ai, Jing Liu, Jianwei Huang, Hongtao Rong, Chunyao Song, Chaohui Yin, Qingyan Wang, Yuan Huang, Guo-Dong Liu, Zu-Yan Xu, and Xing-Jiang Zhou. Electronic Evolution from the Parent Mott Insulator to a Superconductor in Lightly Hole-Doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$[J]. Chin. Phys. Lett., 2020, 37(8): 077402
[14] Ya-Ting Jia, Jian-Fa Zhao, Si-Jia Zhang, Shuang Yu, Guang-Yang Dai, Wen-Min Li, Lei Duan, Guo-Qiang Zhao, Xian-Cheng Wang, Xu Zheng, Qing-Qing Liu, You-Wen Long, Zhi Li, Xiao-Dong Li, Hong-Ming Weng, Run-Ze Yu, Ri-Cheng Yu, Chang-Qing Jin. Superconductivity in Topological Semimetal $\theta$-TaN at High Pressure[J]. Chin. Phys. Lett., 2019, 36(8): 077402
[15] Ping Ai, Qiang Gao, Jing Liu, Yuxiao Zhang, Cong Li, Jianwei Huang, Chunyao Song, Hongtao Yan, Lin Zhao, Guo-Dong Liu, Gen-Da Gu, Feng-Feng Zhang, Feng Yang, Qin-Jun Peng, Zu-Yan Xu, Xing-Jiang Zhou. Distinct Superconducting Gap on Two Bilayer-Split Fermi Surface Sheets in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Superconductor[J]. Chin. Phys. Lett., 2019, 36(6): 077402
Viewed
Full text


Abstract