CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Surface State Bands in Superconducting (PtxIr1?x)Te2 |
KONG Wan-Dong1, MIAO Hu1, QIAN Tian1**, WANG Zhi-Jun1, XU Gang1, FANG Ai-Fang1, HUANG Yao-Bo1, ZHANG Peng1, SHI Xun1, FANG Zhong1,2, DAI Xi1,2, RICHARD Pierre1,2, WANG Nan-Lin1,2,3, DING Hong1,2** |
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 2Collaborative Innovation Center of Quantum Matter, Beijing 100871 3International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871
|
|
Cite this article: |
KONG Wan-Dong, MIAO Hu, QIAN Tian et al 2015 Chin. Phys. Lett. 32 077402 |
|
|
Abstract Angle-resolved photoemission spectroscopy is performed to study the bulk and surface electronic structures of non-superconducting IrTe2 and superconducting Pt0.05Ir0.95Te2. In addition to the bulk electronic bands predicted by the local density approximation calculations, we observe two Dirac cone-like bands at the Brillouin zone center, which are non-dispersive along kz, suggesting that the extra bands are surface state bands. As the experimental results are well consistent with the ab initio calculations of surface states, the parity analysis proves that these surface state bands are topologically trivial and thus exclude (PtxIr1?x)Te2 as a possible topological superconductor candidate.
|
|
Received: 16 March 2015
Published: 30 July 2015
|
|
PACS: |
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
74.70.Xa
|
(Pnictides and chalcogenides)
|
|
74.20.Mn
|
(Nonconventional mechanisms)
|
|
|
|
|
[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [3] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407 [4] Brouwer P W 2012 Science 336 989 [5] Fu L and Berg E 2010 Phys. Rev. Lett. 105 097001 [6] Sasaki S et al 2012 Phys. Rev. Lett. 109 217004 [7] Hor Y S et al 2010 Phys. Rev. Lett. 104 057001 [8] Wray L A et al 2010 Nat. Phys. 6 855 [9] Tanaka Y et al 2012 Phys. Rev. B 85 125111 [10] Kriener M et al 2011 Phys. Rev. Lett. 106 127004 [11] Zabolotnyy V B et al 2012 New J. Phys. 14 063039 [12] Liu S Y et al 2012 Phys. Rev. B 86 165112 [13] Nelson K D et al 2004 Science 306 1151 [14] Luke G M et al 1998 Nature 394 558 [15] Sato T, Tanaka Y, Nakayama K, Souma S, Takahashi T, Sasaki S, Ren Z, Taskin A A, Segawa K and Ando Y 2013 Phys. Rev. Lett. 110 206804 [16] Wang H, Wang H C, Liu H W, Lu H, Yang W H, Jia S, Liu X J, Xie X C, Wei J and Wang J 2015 arXiv:1501.00418[cond-mat.supr-con] [17] Yang J J, Choi Y J, Oh Y S, Horibe A, Kim K, Min B I and Cheong S W 2012 Phys. Rev. Lett. 108 116402 [18] Fang A F, Xu G, Dong T, Zhang P and Wang N L 2013 Sci. Rep. 3 1153 [19] Kiswandhi A, Brooks J S, Cao H B, Yan J Q, Mandrus D, Jiang Z and Zhou H D 2013 Phys. Rev. B 87 121107(R) [20] Ootsuki D, Wakisaka Y, Pyon S, Kudo K, Nohara M, Arita M, Anzai H, Namatame H, Taniguchi M, Saini N L and Mizokawa T 2012 Phys. Rev. B 86 014519 [21] Yu D J, Yang F, Miao L, Han C Q, Yao M Y, Zhu F, Song Y R, Zhang K F, Ge J F, Yao X, Zou Z Q, Li Z J, Gao B F, Liu C, Guan D D, Gao C L, Qian D and Jia J F 2014 Phys. Rev. B 89 100501 [22] Zhang P, Richard P, Qian T, Xu Y M, Dai X and Ding H 2011 Rev. Sci. Instrum. 82 043712 [23] Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847 [24] Souza I, Marzari N and Vanderbilt D 2001 Phys. Rev. B 65 035109 [25] Sancho M P L, Sancho J M L and Rubio J 1984 J. Phys. F 14 1205 [26] Sancho M P L, Sancho J M L, Sancho J M L and Rubio J 1985 J. Phys. F 15 1581 [27] Zhou X D and Wang Y Y Private communication |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|