Chin. Phys. Lett.  2015, Vol. 32 Issue (07): 077303    DOI: 10.1088/0256-307X/32/7/077303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The Effect of Oxygen Partial Pressure during Active Layer Deposition on Bias Stability of a-InGaZnO TFTs
HUANG Xiao-Ming1, WU Chen-Fei2, LU Hai2**, REN Fang-Fang2, ZHU Hong-Bo1, WANG Yong-Jin1**
1Peter Grünberg Research Center, Nanjing University of Posts and Telecommunications, Nanjing 210003
2Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
Cite this article:   
HUANG Xiao-Ming, WU Chen-Fei, LU Hai et al  2015 Chin. Phys. Lett. 32 077303
Download: PDF(652KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effect of oxygen partial pressure (PO2) during the channel layer deposition on bias stability of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) is investigated. As PO2 increases from 10% to 30%, it is found that the device shows enhanced bias stress stability with significantly reduced threshold voltage drift under positive gate bias stress. Based on the x-ray photoelectron spectroscopy measurement, the concentration of oxygen vacancies (OV) within the a-IGZO layer is suppressed by increasing PO2. Meanwhile, the low-frequency noise analysis indicates that the average trap density near the channel/dielectric interface continuously drops with increasing PO2. Therefore, the improved interface quality with increasing PO2 during the channel layer deposition can be attributed to the reduction of interface OV-related defects, which agrees with the enhanced bias stress stability of the a-IGZO TFTs.
Received: 06 April 2015      Published: 30 July 2015
PACS:  73.61.Jc (Amorphous semiconductors; glasses)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  73.20.At (Surface states, band structure, electron density of states)  
  79.40.+z (Thermionic emission)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/7/077303       OR      https://cpl.iphy.ac.cn/Y2015/V32/I07/077303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Xiao-Ming
WU Chen-Fei
LU Hai
REN Fang-Fang
ZHU Hong-Bo
WANG Yong-Jin
[1] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M and Hosono H 2004 Nature 432 488
[2] Yabuta H, Sano M, Abe K, Aiba T, Den T, Kumomi H, Nomura K, Kamiya T and Hosono H 2006 Appl. Phys. Lett. 89 112123
[3] Lee J, Park J S, Pyo Y S, Lee D B, Kim E H, Stryakhilev D, Kim T W, Jin D U and Mo Y G 2009 Appl. Phys. Lett. 95 123502
[4] Jeong J K, Yang H W, Jeong J H, Mo Y G and Kim H D 2008 Appl. Phys. Lett. 93 123508
[5] Lee S Y, Kim D H, Chong E, Jeon Y W and Kim D H 2011 Appl. Phys. Lett. 98 122105
[6] Seo S J, Jeon J H, Hwang Y H and Bae B S 2011 Appl. Phys. Lett. 99 152102
[7] Ide K, Kikuchi Y, Nomuar K, Kimura M, Kamiya T and Hosono H 2011 Appl. Phys. Lett. 99 093507
[8] Chiu C J, Pei Z W, Chang S T, Chang S P and Chang S J 2011 Vacuum 86 246
[9] Takagi A, Nomura K, Ohta H, Kamiya T, Hirano M and Hosono H 2005 Thin Solid Films 486 38
[10] Lee J M, Cho I T, Lee J H, Cheong W S, Hwang C S and Kwon H I 2009 Appl. Phys. Lett. 94 222112
[11] Suresh A and Muth J F 2008 Appl. Phys. Lett. 92 033502
[12] Huang X M, Wu C F, Lu H, Xu Q Y, Zhang R and Zheng Y D 2012 Chin. Phys. Lett. 29 067302
[13] Huang X M, Wu C F, Lu H, Ren F F, Chen D J, Zhang R and Zheng Y D 2013 Appl. Phys. Lett. 102 193505
[14] Yang S, Ji K H, Kim U K, Hwang C S, Park S K, Hwang C S, Jang J and Jeong J K 2011 Appl. Phys. Lett. 99 102103
[15] Lee K W, Kim K M, Heo K Y, Park S K, Lee S K and Kim H J 2011 Curr. Appl. Phys. 11 280
[16] Jeon S, Kim S I, Park S, Song I, Park J, Kim S and Kim C 2010 IEEE Electron Device Lett. 27 1128
[17] Giusi G, Crupi F, Pace C, Ciofi C and Groeseneken G 2006 IEEE Trans. Electron Devices 53 823
[18] Choi H S, Jeon S, Kim H, Shin J, Kim C and Chung U I 2011 Appl. Phys. Lett. 98 183502
[19] Magnone P, Crupi F, Giusi G, Pace C, Simoen E, Claeys C, Pantisano L, Maji D, Rao V R and Srinivasan P IEEE Trans. Device Mater. Reliab. 9 180
[20] Hung K K, Ko P K, Hu C and Cheng Y C 1990 IEEE Trans. Electron Devices 37 654
[21] Lina G R, Lin C J and Kuo H C 2007 Appl. Phys. Lett. 91 093122
[22] Christensson S, Lundstr?m I and Svensson C 1968 Solid-State Electron. 11 797
[23] Douglas E A, Scheurmann A, Davies R P, Gila B P, Cho H, Craciun V, Lambers E S, Pearton S J and Ren F 2011 Appl. Phys. Lett. 98 242110
[24] Kim B, Chong E, Kim D H, Jeon Y W, Kim D H and Lee1 S Y 2010 Appl. Phys. Lett. 97 022108
[25] Kim D H, Yoo D Y, Jung H K, Kim D H and Lee S Y 2011 Appl. Phys. Lett. 99 172106
Related articles from Frontiers Journals
[1] Bojing Lu, Rumin Liu, Siqin Li, Rongkai Lu, Lingxiang Chen, Zhizhen Ye, and Jianguo Lu. Room-Temperature Processed Amorphous ZnRhCuO Thin Films with p-Type Transistor and Gas-Sensor Behaviors[J]. Chin. Phys. Lett., 2020, 37(9): 077303
[2] Lan-Feng Tang, Hai Lu, Fang-Fang Ren, Dong Zhou, Rong Zhang, You-Dou Zheng, Xiao-Ming Huang,. Electrical Instability of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors under Ultraviolet Illumination[J]. Chin. Phys. Lett., 2016, 33(03): 077303
[3] YU Guang, WU Chen-Fei, LU Hai, REN Fang-Fang, ZHANG Rong, ZHENG You-Dou, HUANG Xiao-Ming. Frequency Performance of Ring Oscillators Based on a-IGZO Thin-Film Transistors[J]. Chin. Phys. Lett., 2015, 32(4): 077303
[4] ZHOU Ju-Mei, GAO Xiao-Hong, ZHANG Hong-Liang. Lateral-Coupled Junctionless IZO-Based Electric-Double-Layer Thin-Film Transistors Gated by Solid-State Phosphosilicate Glass Electrolyte[J]. Chin. Phys. Lett., 2015, 32(03): 077303
[5] WU Guo-Dong, ZHANG Jin, WAN Xiang. Junctionless Coplanar-Gate Oxide-Based Thin-Film Transistors Gated by Al2O3 Proton Conducting Films on Paper Substrates[J]. Chin. Phys. Lett., 2014, 31(10): 077303
[6] ZHANG Jin, WU Guo-Dong. Ultralow-Voltage Electric-Double-Layer Oxide-Based Thin-Film Transistors with Faster Switching Response on Flexible Substrates[J]. Chin. Phys. Lett., 2014, 31(07): 077303
[7] ZHU De-Ming, MEN Chuan-Ling, WAN Xiang, DENG Chuang, LI Zhen-Peng. Self-Assembled in-Plane-Gate Thin-Film Transistors Gated by WOx Solid-State Electrolytes[J]. Chin. Phys. Lett., 2013, 30(8): 077303
[8] XU Wei-Zong, FU Li-Hua, LU Hai, REN Fang-Fang, CHEN Dun-Jun, ZHANG Rong, ZHENG You-Dou . GaN Schottky Barrier Diodes with High-Resistivity Edge Termination Formed by Boron Implantation[J]. Chin. Phys. Lett., 2013, 30(5): 077303
[9] Raja J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, A. R. Samavati, M. N. A Jamaludin, S. Naseem. Plasmon-Enhanced Upconversion Fluorescence in Er3+:Ag Phosphate Glass: the Effect of Heat Treatment[J]. Chin. Phys. Lett., 2013, 30(2): 077303
[10] Raja J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, and B. A. Tahir. Optical Investigation of Sm3+ Doped Zinc-Lead-Phosphate Glass[J]. Chin. Phys. Lett., 2012, 29(8): 077303
[11] HUANG Xiao-Ming, WU Chen-Fei, LU Hai, XU Qing-Yu, ZHANG Rong, ZHENG You-Dou. Impact of Interfacial Trap Density of States on the Stability of Amorphous InGaZnO-Based Thin-Film Transistors[J]. Chin. Phys. Lett., 2012, 29(6): 077303
[12] WAN Qi-Jian, FENG Jie, GUO Gang. Crystallization Characteristics of SiNx-Doped SbTe Films for Phase Change Memory[J]. Chin. Phys. Lett., 2012, 29(3): 077303
[13] XU Xiao-Yan, MA Xiang-Yang, JIN Lu, YANG De-Ren. Effect of Rapid Thermal Annealing Ambient on Photoluminescence of ZnO Films[J]. Chin. Phys. Lett., 2012, 29(3): 077303
[14] GAO Xi-Li, ZHANG Xiao-Zhong, WAN Cai-Hua, WANG Ji-Min. Voltage-Induced Effect on Resistance of C:N/Si Heterojunctions[J]. Chin. Phys. Lett., 2012, 29(2): 077303
[15] SUN Tao, WANG Ming-Qing, SUN Yong-Jian, WANG Bo-Ping, ZHANG Guo-Yi, TONG Yu-Zhen, DUAN Hui-Ling** . Deflection Reduction of GaN Wafer Bowing by Coating or Cutting Grooves in the Substrates[J]. Chin. Phys. Lett., 2011, 28(4): 077303
Viewed
Full text


Abstract