CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Improvement of Performance of Organic Light-Emitting Diodes with Both a MoO3 Hole Injection Layer and a MoO3 Doped Hole Transport Layer |
LIU Wei, LIU Guo-Hong, LIU Yong, LI Bao-Jun, ZHOU Xiang** |
State Key Lab of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275
|
|
Cite this article: |
LIU Wei, LIU Guo-Hong, LIU Yong et al 2015 Chin. Phys. Lett. 32 077206 |
|
|
Abstract We improve the performance of organic light-emitting diodes (OLEDs) with both a MoO3 hole injection layer (HIL) and a MoO3 doped hole transport layer (HTL), and present a systematical and comparative investigation on these devices. Compared with OLEDs with only MoO3 HIL or MoO3 doped HTL, OLEDs with both MoO3 HIL and MoO3 doped HTL show superior performance in driving voltage, power efficiency, and stability. Based on the typical NPB/Alq3 heterojunction structure, OLEDs with both MoO3 HIL and MoO3 doped HTL show a driving voltage of 5.4 V and a power efficiency of 1.41 lm/W for 1000 cd/m2, and a lifetime of around 0.88 h with an initial luminance of 5268 cd/m2 under a constant current of 190 mA/cm2 operation in air without encapsulation. While OLEDs with only MoO3 HIL or MoO3 doped HTL show higher driving voltages of 6.4 V or 5.8 V and lower power efficiencies of 1.20 lm/W or 1.34 lm/W for 1000 cd/m2, and a shorter lifetime of 0.33 or 0.60 h with an initial luminance of around 5122 or 5300 cd/m2 under a constant current of 200 or 216 mA/cm2 operation. Our results demonstrate clearly that using both MoO3 HIL and MoO3 doped HTL is a simple and effective approach to simultaneously improve both the hole injection and transport efficiency, resulting from the lowered energy barrier at the anode interface and the increased hole carrier density in MoO3 doped HTL.
|
|
Received: 05 March 2015
Published: 30 July 2015
|
|
PACS: |
72.80.Le
|
(Polymers; organic compounds (including organic semiconductors))
|
|
78.60.Fi
|
(Electroluminescence)
|
|
85.60.Jb
|
(Light-emitting devices)
|
|
|
|
|
[1] Tang C W and VanSlyke S A 1987 Appl. Phys. Lett. 51 913 [2] Meyer J, Hamwi S, Kr?ger M, Kowalsky W, Riedl T and Kahn A 2012 Adv. Mater. 24 5408 [3] Tokito S, Noda K and Taga Y 1996 J. Phys. D: Appl. Phys. 29 2750 [4] Kanno H, Holmes R J, Sun Y, Kena C S and Forrest S R 2006 Adv. Mater. 18 339 [5] Matsushima T, Kinoshita Y and Murata H 2007 Appl. Phys. Lett. 91 253504 [6] Matsushima T, Jin G H and Murata H 2008 J. Appl. Phys. 104 054501 [7] Matsushima T and Murata H 2009 Appl. Phys. Lett. 95 203306 [8] You H, Dai Y, Zhang Z and Ma D 2007 J. Appl. Phys. 101 026105 [9] Kr?ger M, Hamwi S, Meyer J, Riedl T, Kowalsky W and Kahn A 2009 Appl. Phys. Lett. 95 123301 [10] Kr?ger M, Hamwi S, Meyer J, Riedl T, Kowalsky W and Kahn A 2009 Org. Electron. 10 932 [11] Meyer J, Shu A, Kr?er M and Kahn A 2010 Appl. Phys. Lett. 96 133308 [12] Kanai K, Koizumi K, Ouchi S, Tsukamoto Y, Sakanoue K, Ouchi Y and Seki K 2010 Org. Electron. 11 188 [13] El Basaty A, Miyauchi Y, Mizutani G, Matsushima T and Murata H 2010 Appl. Phys. Lett. 97 193302 [14] Vasilopoulou M, Palilis L C, Georgiadou D G, Kennou S, Kostis I, Davazoglou D and Argitis P 2012 Appl. Phys. Lett. 100 013311 [15] Zhao Y, Chen J, Chen W and Ma D 2012 J. Appl. Phys. 111 043716 [16] Xu H T and Zhou X 2013 J. Appl. Phys. 114 244505 [17] Shi X B, Xu M F, Zhou D Y, Wang Z K and Liao L S 2013 Appl. Phys. Lett. 102 233304 [18] Wang P S, Lo Y Y, Tseng W H, Chen M H and Wu C I 2013 J. Appl. Phys. 114 063710 [19] Chang J H, Liu S Y, Wu I W, Chen T C, Liu C W and Wu C I 2014 J. Appl. Phys. 115 124510 [20] Deng Y H, Chen X Y, Ou Q D, Wang Q K, Jiang X C, Zhang D D and Li Y Q 2014 Appl. Phys. Lett. 104 221104 [21] Ikeda H, Sakata J, Hayakawa M, Aoyama T, Kawakami T, Kamata K, Iwaki Y, Seo S, Noda Y and Nomura R 2006 SID 06 DIGEST P-185 923 [22] Lee H, Cho S W, Han K, Jeon P E, Whang C N, Jeong K, Cho K and Yi Y 2008 Appl. Phys. Lett. 93 043308 [23] Matsushima T and Adachi C 2008 J. Appl. Phys. 103 034501 [24] Shin W J, Lee J Y, Kim J C, Yoon T H, Kim T S and Song O K 2008 Org. Electron. 9 333 [25] Wang F, Qiao X, Xiong T and Ma D 2008 Org. Electron. 9 985 [26] Qiao X, Chen J, Li X and Ma D 2010 J. Appl. Phys. 107 104505 [27] Kubo M, Iketaki K, Kaji T and Hiramoto M 2011 Appl. Phys. Lett. 98 073311 [28] Qiu J, Wang Z B, Helander M G and Lu Z H 2011 Appl. Phys. Lett. 99 153305 [29] Greiner M T, Helander M G, Tang W M, Wang Z B, Qiu J and Lu Z H 2011 Nat. Mater. 11 76 [30] Wang Z, Waqas Alam M, Lou Y, Naka S and Okada H 2012 Appl. Phys. Lett. 100 043302 [31] Gao C H, Zhu X Z, Zhang L, Zhou D Y, Wang Z K and Liao L S 2013 Appl. Phys. Lett. 102 153301 [32] Glaser T, Beck S, Lunkenheimer B, Donhauser D, K?hn A, Kr?ger M and Pucci A 2013 Org. Electron. 14 575 [33] Matsushima T and Murata H 2013 Org. Electron. 14 1149 [34] Wu S P, Kang Y, Liu T L, Jin, N Jiang Z H and Lu Z H 2013 Appl. Phys. Lett. 102 163304 [35] Xie G, Fehse K, Leo K and Gather M C 2014 Phys. Status Solidi A 211 1168 [36] Kondakov D Y, Sandifer J R, Tang C W and Young R H 2003 J. Appl. Phys. 93 1108 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|