Chin. Phys. Lett.  2015, Vol. 32 Issue (07): 077205    DOI: 10.1088/0256-307X/32/7/077205
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
AlGaN Channel High Electron Mobility Transistors with an AlxGa1?xN/GaN Composite Buffer Layer
LI Xiang-Dong1, ZHANG Jin-Cheng1**, ZOU Yu1, MA Xue-Zhi2, LIU Chang2, ZHANG Wei-Hang1, WEN Hui-Juan1, HAO Yue1
1Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071
2School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
Cite this article:   
LI Xiang-Dong, ZHANG Jin-Cheng, ZOU Yu et al  2015 Chin. Phys. Lett. 32 077205
Download: PDF(1293KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report an AlGaN channel high electron mobility transistor (HEMT) on a sapphire substrate with a 1000-nm AlxGa1?xN (x=0–0.18)/GaN composite buffer layer. With a significant improvement of crystal quality, the device features a high product of nsn. The AlGaN channel HEMTs presented show improved performance with respect to the conventional AlGaN channel HEMTs, including the on-resistance reduced from 31.2 to 8.1 Ω?mm, saturation drain current at 2 V gate bias promoted from 218 to 540 mA/mm, peak transconductance at 10 V drain bias promoted from 100 to a state-of-the-art value of 174 mS/mm, and reverse gate leakage current reduced from 1.85×10?3 to 2.15×10?5 mA/mm at VGD=?20 V.
Received: 27 January 2015      Published: 30 July 2015
PACS:  72.80.Ey (III-V and II-VI semiconductors)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/7/077205       OR      https://cpl.iphy.ac.cn/Y2015/V32/I07/077205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Xiang-Dong
ZHANG Jin-Cheng
ZOU Yu
MA Xue-Zhi
LIU Chang
ZHANG Wei-Hang
WEN Hui-Juan
HAO Yue
[1] Khan M A, Bhattarai A, Kuznia J N and Olson D T 1993 Appl. Phys. Lett. 63 1214
[2] Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K and Parikh P 2004 IEEE Electron Device Lett. 25 117
[3] Zhang N Q, Keller S, Parish G, Heikman S, DenBaars S P and Mishra U K 2000 IEEE Electron Device Lett. 21 421
[4] Dora Y, Chakraborty A, McCarthy L, Keller S, DenBaars S P and Mishra U K 2006 IEEE Electron Device Lett. 27 713
[5] Chen C Q, Zhang J P, Adivarahan V, Koudymov A, Fatima H, Simin G, Yang J and Khan M A 2003 Appl. Phys. Lett. 82 4593
[6] Meng F, Zhang J, Zhou H, Ma J, Xue J, Dang L, Zhang L, Lu M, Ai S, Li X and Hao Y 2012 J. Appl. Phys. 112 023707
[7] Bahat T E, Hilt O, Brunner F, Sidorov V, Wurfl J and Trankle G 2010 IEEE Trans. Electron Devices 57 1208
[8] Nanjo T, Takeuchi M, Suita M, Abe Y, Oishi T, Tokuda Y and Aoyagi Y 2007 IEEE Int. Electron. Devices Meeting (Washington DC 10–12 December) p 397
[9] Raman A, Dasgupta S, Rajan S, Speck J S and Mishra U K 2008 Jpn. J. Appl. Phys. 47 3359
[10] Hashimoto S, Akita K, Tanabe T, Nakahata H, Takeda K and Amano H 2010 Phys. Status Solidi C 7 1938
[11] Hashimoto S, Akita K, Yamamoto Y, Ueno M, Nakamura T, Yafune N, Sakuno K, Tokuda H, Kuzuhara M, Takeda K, Iwaya M and Amano H 2012 Phys. Status Solidi C 9 373
[12] Tokuda H, Hatano M, Yafune N, Hashimoto S, Akita K, Yamamoto Y and Kuzuhara M 2010 Appl. Phys. Express 3 121003
[13] Ha W, Zhang J C, Zhao S L, Ge S S, Wen H J, Zhang C F, Ma X H and Hao Y 2013 Chin. Phys. Lett. 30 127201
[14] Wen H, Zhang J, Lu X, Wang Z, Ha W, Ge S, Cao R and Hao Y 2014 Chin. Phys. B 23 037302
[15] Zywietz T, Neugebauer J and Scheffler M 1998 Appl. Phys. Lett. 73 487
[16] Nanjo T, Imai A, Suzuki Y, Abe Y, Oishi T, Suita M, Yagyu E and Tokuda Y 2013 IEEE Trans. Electron Devices 60 1046
[17] Elsner J, Jones R, Heggie M I, Sitch P K, Haugk M, Frauenheim T, ?berg S and Briddon P R 1998 Phys. Rev. B 58 12571
[18] Fang Z Q, Look D C and Polenta L 2002 J. Phys.: Condens. Matter 14 13061
[19] Dora Y, Chakraborty A, Heikman S, McCarthy L, Keller S, DenBaars S P and Mishra U K 2006 IEEE Electron Device Lett. 27 529
[20] Liu J, Zhou Y, Zhu J, Lau K M and Chen K J 2006 IEEE Electron Device Lett. 27 10
[21] Qiao D, Yu L S, Lau S S, Redwing J M, Lin J Y and Jiang H X 2000 J. Appl. Phys. 87 801
[22] Zhao S, Zhang K, Ha W, Chen Y, Zhang P, Zhang J and Hao Y 2013 Appl. Phys. Lett. 103 212106
[23] Kim K, Lambrecht W, Segall B and Schilfgaarde M 1997 Phys. Rev. B 56 7363
[24] Hsu J W P, Manfra M J, Lang D V, Richter S, Chu S N G, Sergent A M, Kleiman1 R N, Pfeiffer L N and Molnar R J 2001 Appl. Phys. Lett. 78 1685
[25] Hsu J W P, Manfra M J, Molnar R J, Heying B and Speck J S 2002 Appl. Phys. Lett. 81 79
Related articles from Frontiers Journals
[1] Yongyong You , Tianran Jiang , and Tianshu Lai. A Simple Time-Resolved Optical Measurement of Diffusion Transport Dynamics of Photoexcited Carriers and Its Demonstration in Intrinsic GaAs Films[J]. Chin. Phys. Lett., 2020, 37(8): 077205
[2] Li Zhang, Jin-Feng Zhang, Wei-Hang Zhang, Tao Zhang, Lei Xu, Jin-Cheng Zhang, Yue Hao. Robust Performance of AlGaN-Channel Metal-Insulator-Semiconductor High-Electron-Mobility Transistors at High Temperatures[J]. Chin. Phys. Lett., 2017, 34(12): 077205
[3] LI Xiang-Dong, ZHANG Jin-Cheng, GUO Zhen-Xing, JIANG Hai-Qing, ZOU Yu, ZHANG Wei-Hang, HE Yun-Long, JIANG Ren-Yuan, ZHAO Sheng-Lei, HAO Yue. Al0.30Ga0.70N/GaN/Al0.07Ga0.93N Double Heterostructure High Electron Mobility Transistors with a Record Saturation Drain Current of 1050 mA/mm[J]. Chin. Phys. Lett., 2015, 32(11): 077205
[4] FANG Yu-Long, FENG Zhi-Hong, LI Cheng-Ming, SONG Xu-Bo, YIN Jia-Yun, ZHOU Xing-Ye, WANG Yuan-Gang, LV Yuan-Jie, CAI Shu-Jun. High-Temperature Performance Analysis of AlGaN/GaN Polarization Doped Field Effect Transistors Based on the Quasi-Multi-Channel Model[J]. Chin. Phys. Lett., 2015, 32(03): 077205
[5] WANG Guang-Bing, ZHAO Guo-Zhong, ZHENG Xian-Tong, WANG Ping, CHEN Guang, RONG Xin, WANG Xin-Qiang. Growth of a-Plane InN Film and Its THz Emission[J]. Chin. Phys. Lett., 2014, 31(07): 077205
[6] JI Xiao-Fan, XU Zheng, CAO Shuo, QIU Kang-Sheng, TANG Jing, ZHANG Xi-Tian, XU Xiu-Lai. Single-ZnO-Nanobelt-Based Single-Electron Transistors[J]. Chin. Phys. Lett., 2014, 31(06): 077205
[7] YU Xin-Xin, NI Jin-Yu, LI Zhong-Hui, KONG Cen, ZHOU Jian-Jun, DONG Xun, PAN Lei, KONG Yue-Chan, CHEN Tang-Sheng. AlGaN/GaN HEMTs on 4-Inch Silicon Substrates in the Presence of 2.7-µm -Thick Epilayers with the Maximum Off-State Breakdown Voltage of 500 V[J]. Chin. Phys. Lett., 2014, 31(03): 077205
[8] HA Wei, ZHANG Jin-Cheng, ZHAO Sheng-Lei, GE Sha-Sha, WEN Hui-Juan, ZHANG Chun-Fu, MA Xiao-Hua, HAO Yue. AlGaN Channel High Electron Mobility Transistors with Ultra-Low Drain-Induced-Barrier-Lowering Coefficient[J]. Chin. Phys. Lett., 2013, 30(12): 077205
[9] WEI Ling, ZHANG Wei-Feng. A Win-Win Effect for Both the Ferromagnetism and the Dopability of p-Type Doping in ZnO:(Cu+N)[J]. Chin. Phys. Lett., 2013, 30(8): 077205
[10] WANG Zhi-Gang, CHEN Wan-Jun, ZHANG Bo, LI Zhao-Ji. A Novel Controllable Hybrid-Anode AlGaN/GaN Field-Effect Rectifier with Low Operation Voltage[J]. Chin. Phys. Lett., 2012, 29(10): 077205
[11] SHI Wei, TAI Qiang, XIA Xian-Hai, YI Ming-Dong, XIE Ling-Hai, FAN Qu-Li, WANG Lian-Hui, WEI Ang, and HUANG Wei. Unipolar Resistive Switching Effects Based on Al/ZnO/P++-Si Diodes for Nonvolatile Memory Applications[J]. Chin. Phys. Lett., 2012, 29(8): 077205
[12] WANG Jian-Hui, WANG Xin-Hua, PANG Lei, CHEN Xiao-Juan, JIN Zhi, and LIU Xin-Yu. Determination of Channel Temperature in AlGaN/GaN HEMTs by Pulsed IV Characteristics[J]. Chin. Phys. Lett., 2012, 29(8): 077205
[13] YAN Da-Wei, ZHU Zhao-Min, CHENG Jian-Min, GU Xiao-Feng, and LU Hai. Forward Current Transport Mechanism and Schottky Barrier Characteristics of a Ni/Au Contact on n-GaN[J]. Chin. Phys. Lett., 2012, 29(8): 077205
[14] CAO Xiao-Long, WANG Yu-Ye, XU De-Gang, **, ZHONG Kai, LI Jing-Hui, LI Zhong-Yang, ZHU Neng-Nian, YAO Jian-Quan,. THz-Wave Difference Frequency Generation by Phase-Matching in GaAs/AlxGa1−xAs Asymmetric Quantum Well[J]. Chin. Phys. Lett., 2012, 29(1): 077205
[15] LIU Sheng-Hou, CAI Yong**, GONG Ru-Min, WANG Jin-Yan, ZENG Chun-Hong, SHI Wen-Hua, FENG Zhi-Hong, WANG Jing-Jing, YIN Jia-Yun, Cheng P. Wen, QIN Hua, ZHANG Bao-Shun . Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors Using a Nano-Channel Array Structure[J]. Chin. Phys. Lett., 2011, 28(7): 077205
Viewed
Full text


Abstract