Chin. Phys. Lett.  2015, Vol. 32 Issue (07): 077204    DOI: 10.1088/0256-307X/32/7/077204
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Effects of Nonparabolicity on Electron Thermopower of Size-Quantized Semiconductor Films
BAHSHELI Guliyev1, AKBAR Barati Chiyaneh2**, NOVRUZ Bashirov3, GENBER Kerimli4
1Baku State University, Department of Physics, Baku, Azerbaijan
2Yüzüncü Y?l University, Department of Mathematics, Van 65080, Turkey
3Yüzüncü Y?l University, Health Occupation High School, Van 65080, Turkey
4I?d?r University, Departments of Electrical and Electronic Engineering, I?d?r, Turkey
Cite this article:   
BAHSHELI Guliyev, AKBAR Barati Chiyaneh, NOVRUZ Bashirov et al  2015 Chin. Phys. Lett. 32 077204
Download: PDF(452KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Effects of nonparabolicity of energy band on thermopower, in-plane effective mass and Fermi energy are investigated in size-quantized semiconductor films in a strong while non-quantized magnetic field. We obtain the expressions of these quantities as functions of thickness, concentration and nonparabolicity parameter. The influence of nonparabolicity is studied for degenerate and non-degenerate electron gases, and it is shown that nonparabolicity changes the character of thickness and the concentration dependence of thermopower, in-plane effective mass and Fermi energy. Moreover, the magnitudes of these quantities significantly increase with respect to the nonparabolicity parameter in the case of strong nonparabolicity in nano-films. The concentration dependence is also studied, and it is shown that thermopower increases when the concentration decreases. These results are in agreement with the experimental data.
Received: 02 February 2015      Published: 30 July 2015
PACS:  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  73.21.Fg (Quantum wells)  
  73.61.Ey (III-V semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/7/077204       OR      https://cpl.iphy.ac.cn/Y2015/V32/I07/077204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
BAHSHELI Guliyev
AKBAR Barati Chiyaneh
NOVRUZ Bashirov
GENBER Kerimli
[1] Askerov B M 1994 Electron Transport Phenomena in Semiconductors (Singapore: World Scientific Publishing)
[2] Anselm A I 1981 Introduction to Semiconductor Theory (Moscow: MIR Publisher)
[3] Ekenberg U 1989 Phys. Rev. B 40 7714
[4] Haunt S, Mandray A and Etyenne B 1992 Phys. Rev. B 46 2613
[5] Warburton R J, Michels J G, Nicolas R J, Haris J J and Faxon C T 1992 Phys. Rev. B 46 13394
[6] Guliyev B I and Eminbeyli R F 2008 Physica B 403 1751
[7] Guliyev B I and Kerimli G 2012 Mod. Phys. Lett. B 26 1250198
[8] Freik D M, Yurchyshyn I K, Potyak V Y and Chobaniuk V M 2014 Ukr. J. Phys. 59 No 2
[9] Rogacheva E I, Lyubchenko S G, Meriuts A V, Yanenko P A, Men'shov Y V and Dresselhaus M S 2007 Semiconducting Lead Chalcogenides (New York: Plenum) p 156
[10] Dmytro M F, Igor K Y, Vasyl V B, Lidiya T H and Yuriy V L Nanomaterials: Applications and Properties (NAP-201), Vol 1 Part I
[11] Martin J, Wang L, Chen L D and Nolas G S 2009 Phys. Rev. B 79 115311
[12] Nate M, Eugene E H, Gregor K, Chad G, James S S, William J S, Michael E H, Kin M Y and Joel W A 2011 Phys. Rev. B 84 075315
[13] Freik D M, Yurchyshyn I K, Potyak V Y and Lysiuk Y V 2011 Semiconduct. Phys. Quantum Electron. Optoelectron. 14 344
[14] Patil, S S and Pawar P H 2012 Chalcogenide Lett. 9 133
Related articles from Frontiers Journals
[1] Min Zhang, Chaoliang Hu, Qi Zhang, Feng Liu, Shen Han, Chenguang Fu, and Tiejun Zhu. Realizing n-Type GeTe through Suppressing the Formation of Cation Vacancies and Bi-Doping[J]. Chin. Phys. Lett., 2021, 38(12): 077204
[2] Zhongmou Yue, Kunpeng Zhao, Hongyi Chen, Pengfei Qiu, Lidong Chen, and Xun Shi. Enhanced Thermoelectric Properties of Cu$_{x}$Se ($1.75 \le x \le 2.10$) during Phase Transitions[J]. Chin. Phys. Lett., 2021, 38(11): 077204
[3] Wang Li , Tian Xu , Zheng Ma , Abubakar-Yakubu Haruna, Qing-Hui Jiang , Yu-Bo Luo, and Jun-You Yang. Simultaneous Optimization of Power Factor and Thermal Conductivity towards High-Performance InSb-Based Thermoelectric Materials[J]. Chin. Phys. Lett., 2021, 38(9): 077204
[4] Wenke He , Bingchao Qin , and Li-Dong Zhao. Predicting the Potential Performance in P-Type SnS Crystals via Utilizing the Weighted Mobility and Quality Factor[J]. Chin. Phys. Lett., 2020, 37(8): 077204
[5] Bo Feng, Guang-Qiang Li, Xiao-Ming Hu, Pei-Hai Liu, Ru-Song Li, Yang-Lin Zhang, Ya-Wei Li, Zhu He, Xi-An Fan. Improvement of Thermoelectric Performance in BiCuSeO Oxide by Ho Doping and Band Modulation[J]. Chin. Phys. Lett., 2020, 37(3): 077204
[6] Kai Zhou, Ting Zhang, Bin Liu, Yi-Jun Yao. Electronic Structures and Thermoelectric Properties of ZnSb Doped with Cd and In from First Principles Calculations[J]. Chin. Phys. Lett., 2020, 37(1): 077204
[7] Dong-Dong Yang, Hao Tong, Ling-Jun Zhou, Xiang-Shui Miao. Effects of Thickness and Temperature on Thermoelectric Properties of Bi$_{2}$Te$_{3}$-Based Thin Films[J]. Chin. Phys. Lett., 2017, 34(12): 077204
[8] Peng-Xian Lu, Rui-Xia Zhao. Electronic Structure and Thermoelectric Power Factor of Na$_{x}$CoO$_{2}$ from First-Principles Calculation[J]. Chin. Phys. Lett., 2017, 34(3): 077204
[9] WU Zi-Hua, XIE Hua-Qing, WANG Yuan-Yuan, XING Jiao-Jiao, MAO Jian-Hui. Nanojunctions Contributing to High Performance Thermoelectric ZnO-Based Inorganic–Organic Hybrids[J]. Chin. Phys. Lett., 2015, 32(11): 077204
[10] ZHANG Xin, LIU Jian, LI Yi, SU Wen-Bin, LI Ji-Chao, ZHU Yuan-Hu, LI Mao-Kui, WANG Chun-Ming, WANG Chun-Lei. Enhancement of Thermoelectric Performance of Sr0.9Ba0.1Ti0.8Nb0.2O3 Ceramics by A-Site Cation Nonstoichiometry[J]. Chin. Phys. Lett., 2015, 32(03): 077204
[11] XUN Meng, XU Chen, XIE Yi-Yang, DENG Jun, XU Kun, CHEN Hong-Da. Thermal Analysis of Implant-Defined Vertical Cavity Surface Emitting Laser Array[J]. Chin. Phys. Lett., 2015, 32(01): 077204
[12] XU Kun-Qi, ZENG Hua-Rong, YU Hui-Zhu, ZHAO Kun-Yu, LI Guo-Rong, SONG Jun-Qiang, SHI Xun, CHEN Li-Dong. An Alternating-Current Voltage Modulated Thermal Probe Technique for Local Seebeck Coefficient Characterization[J]. Chin. Phys. Lett., 2014, 31(12): 077204
[13] YAN Guo-Ying, ZHANG Hui-Ling, BAI Zi-Long, WANG Shu-Fang, WANG Jiang-Long, YU Wei, FU Guang-Sheng. The Enhancement of Laser-Induced Transverse Voltage in Tilted Bi2Sr2Co2Oy Thin Films with a Graphite Light Absorption Layer[J]. Chin. Phys. Lett., 2013, 30(4): 077204
[14] KONG Fang-Fang, LIU Cong-Cong, XU Jing-Kun**, JIANG Feng-Xing, LU Bao-Yang, YUE Rui-Rui, LIU Guo-Dong, WANG Jian-Min . Simultaneous Enhancement of Electrical Conductivity and Seebeck Coefficient of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Films Treated with Urea[J]. Chin. Phys. Lett., 2011, 28(3): 077204
[15] LU Bao-Yang, LIU Cong-Cong, LU Shan, XU Jing-Kun, JIANG Feng-Xing, LI Yu-Zhen, ZHANG Zhuo. Thermoelectric Performances of Free-Standing Polythiophene and Poly(3-Methylthiophene) Nanofilms[J]. Chin. Phys. Lett., 2010, 27(5): 077204
Viewed
Full text


Abstract