Chin. Phys. Lett.  2015, Vol. 32 Issue (07): 077203    DOI: 10.1088/0256-307X/32/7/077203
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
31P Nuclear Magnetic Resonance of Charge-Density-Wave Transition in a Single Crystal of RuP
FAN Guo-Zhi1, CHEN Rong-Yan2, WANG Nan-Lin2,3, LUO Jian-Lin1,3**
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871
3Collaborative Innovation Center of Quantum Matter, Beijing 100190
Cite this article:   
FAN Guo-Zhi, CHEN Rong-Yan, WANG Nan-Lin et al  2015 Chin. Phys. Lett. 32 077203
Download: PDF(567KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We perform 31P nuclear magnetic resonance (NMR) measurements on a single crystal of RuP. The anomalies in resistivity at about TA=270 K and TB=330 K indicate that two phase transitions occur. The line shape of 31P NMR spectra in different temperature ranges is attributed to the charge density distribution. The Knight shift and spin-lattice relaxation rate 1/T1T are measured from 10 K to 300 K. At about TA=270 K, they both decrease abruptly with the temperature reduction, which reveals the gap-opening behavior. Well below TA, they act like the case of normal metal. Charge-density-wave phase transition is proposed to interpret the transition occurring at about TA.
Received: 27 March 2015      Published: 30 July 2015
PACS:  72.80.Ga (Transition-metal compounds)  
  71.45.Lr (Charge-density-wave systems)  
  76.60.-k (Nuclear magnetic resonance and relaxation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/7/077203       OR      https://cpl.iphy.ac.cn/Y2015/V32/I07/077203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FAN Guo-Zhi
CHEN Rong-Yan
WANG Nan-Lin
LUO Jian-Lin
[1] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[2] Zhao J, Huang Q, de la Cruz C, Li S l, Lynn J W, Chen Y, Green M A, Chen G F, Li G, Li Z, Luo J L, Wang N L and Dai P C 2008 Nat. Mater. 7 953
[3] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[4] Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W and Lonzarich G G 1998 Nature 394 39
[5] Dahm T, Hinkov V, Borisenko S V, Kordyuk A A, Zabolotnyy V B, Fink J, Büchner B, Scalapino D J, Hanke W and Keimer B 2009 Nat. Phys. 5 217
[6] Wang L, Wang Z, Shi H L, Chen Z, Chiang F K, Tian H F, Yang H X, Fang A F, Wang N L and Li J Q 2014 Chin. Phys. B 23 086103
[7] Morosan E, Zandbergen H W, Dennis B S, Bos J W G, Onose Y, Klimczuk T, Ramirez A P, Ong N P and Cava R J 2006 Nat. Phys. 2 544
[8] Kase N, Hayamizu H, Inoue K and Akimitsu J 2011 Physica C 471 711
[9] Galli F, Ramakrishnan S, Taniguchi T, Nieuwenhuys G J, Mydosh J A, Geupel S, Ludecke J and van Smaalen S 2000 Phys. Rev. Lett. 85 158
[10] Liu H F, Kuo C N, Lue C S, Syu K Z and Kuo Y K 2013 Phys. Rev. B 88 115113
[11] Heyding R D and Calvert L D 1961 Can. J. Chem. 39 955
[12] Endresen K, Furuseth S, Selte K, Kjekshus A, Rakke T and Andresen A F 1977 Acta Chem. Scand. A 31 249
[13] Hirai D, Takayama T, Hashizume D and Takagi H 2012 Phys. Rev. B 85 140509
[14] Motizuki K, Ido H, Itoh T and Morifuji M 2009 Electron. Struct. Magn. 3d-Transition Metal Pnictides. Springer Ser. Mater. Sci. 131 1
[15] Chen R Y, Shi Y G, Zheng P, Wang L, Dong T and Wang N L 2015 Phys. Rev. B 91 125101
[16] Overhauser A W 1978 Hyperfine Interact. 4 786
[17] Follstaedt D and Slichter C P 1976 Phys. Rev. B 13 1017
[18] Skripov A V, Sibirtsev D S, Cherepanov Yu G and Aleksashin B A 1995 J. Phys.: Condens. Matter 7 4479
[19] Timusk T and Statt B 1999 Rep. Prog. Phys. 62 61
[20] Ishida K, Nakai Y, Kitagawa S, Kamihara Y, Hirano M and Hosono H 2009 Physica B 404 3089
[21] Hammel P C, Takigawa M, Heffner R H, Fisk Z and Ott K C 1989 Phys. Rev. Lett. 63 1992
[22] Suits B H and Slichter C P 1984 Phys. Rev. B 29 41
[23] Németh L, Matus P, Kriza G and Alavi B 2001 Synth. Met. 120 1007
[24] Fan G Z, Zhang X, Shi Y G and Luo J L 2013 Sci. Chin.: Phys. Mech. Astron. 56 2399
[25] Sato K, Ootsuki D, Wakisaka Y, Saini N L, Mizokawa T, Arita M, Anzai H, Namatame H, Taniguchi M, Hirai D and Takagi H 2012 arXiv:1205.2669v1[cond-mat]
[26] Terutaka G and Bruno L 2003 Adv. Phys. 52 67
[27] Frohlich H 1954 Proc. R. Soc. London A 223 296
[28] Peierls R E 1955 Quantum Theory of Solids (London: Oxford University Press)
Related articles from Frontiers Journals
[1] Guangqiang Wang, Guoqing Chang, Huibin Zhou, Wenlong Ma, Hsin Lin, M. Zahid Hasan, Su-Yang Xu, and Shuang Jia. Field-Induced Metal–Insulator Transition in $\beta$-EuP$_3$[J]. Chin. Phys. Lett., 2020, 37(10): 077203
[2] Yanjing Tang, Xianxi Yu, Shaobo Liu, Anran Yu, Jiajun Qin, Ruichen Yi, Yuan Pei, Chunqin Zhu, Xiaoyuan Hou. Hole Injection Enhancement of MoO$_{3}$/NPB/Al Composite Anode[J]. Chin. Phys. Lett., 2019, 36(12): 077203
[3] Hong-Jun Wang, Yuan-Yuan Zhu, Jing Zhou. Electron Transport Behavior of Multiferroic Perovskite BiMnO$_{3}$ Prepared by Co-Precipitation Method[J]. Chin. Phys. Lett., 2018, 35(2): 077203
[4] Yan Li, Zhao Sun, Jia-Wei Cai, Jian-Ping Sun, Bo-Sen Wang, Zhi-Ying Zhao, Y. Uwatoko, Jia-Qiang Yan, Jin-Guang Cheng. Pressure-Induced Charge-Order Melting and Reentrant Charge Carrier Localization in the Mixed-Valent Pb$_{3}$Rh$_{7}$O$_{15}$[J]. Chin. Phys. Lett., 2017, 34(8): 077203
[5] Xu-Bo Lai, Yu-Hang Wang, Xiao-Lan Shi, Dong-Yong Li, Bo-Yang Liu, Rong-Ming Wang, Liu-Wan Zhang. Bipolar Resistive Switching in Epitaxial Mn$_{3}$O$_{4}$ Thin Films on Nb-Doped SrTiO$_{3}$ Substrates[J]. Chin. Phys. Lett., 2016, 33(06): 077203
[6] Wei-Cheng Lee, Congjun Wu. Microscopic Theory of the Thermodynamic Properties of Sr$_3$Ru$_2$O$_7$[J]. Chin. Phys. Lett., 2016, 33(03): 077203
[7] CHEN Yong-Chang, HUO Miao, LIU Yang, CHEN Tong, LENG Cheng-Cai, LI Qiang, SUN Zhao-Lin, SONG Li-Juan. Structural, Electrical, and Lithium Ion Dynamics of Li2MnO3 from Density Functional Theory[J]. Chin. Phys. Lett., 2015, 32(01): 077203
[8] ZHU Yuan-Yuan, WANG Rong-Juan, WANG Li, LIU Yong, XIONG Rui, SHI Jing, AN Li-Heng, SUN Duo-Hua. Transport Behavior in Spinel Oxide MgTi2O4[J]. Chin. Phys. Lett., 2014, 31(09): 077203
[9] CAO Yu-Fei, CAI Kai-Ming, LI Li-Jun, LU Wen-Jian, SUN Yu-Ping, WANG Kai-You. Transport and Capacitance Properties of Charge Density Wave in Few-Layer 2H–TaS2 Devices[J]. Chin. Phys. Lett., 2014, 31(07): 077203
[10] ZHAO Geng, CHENG Xiao-Man, **, TIAN Hai-Jun, DU Bo-Qun, LIANG Xiao-Yu . Improved Performance of Pentacene Organic Field-Effect Transistors by Inserting a V2O5 Metal Oxide Layer[J]. Chin. Phys. Lett., 2011, 28(12): 077203
[11] XU Jia-Xiong, YAO Ruo-He*, LIU Yu-Rong . Fabrication of a ZnO:Al/Amorphous-FeSi2 Heterojunction at Room Temperature[J]. Chin. Phys. Lett., 2011, 28(10): 077203
[12] LI Na, YUE Chong-Xing**, LI Xu-Xin . Neutrino-Electron Scattering and the Little Higgs Models[J]. Chin. Phys. Lett., 2011, 28(10): 077203
[13] C. K. Sumesh**, K. D. Patel, V. M. Pathak, R. Srivastav . Current Transport in Copper Schottky Contacts to a−Plane/ c−Plane n-Type MoSe2[J]. Chin. Phys. Lett., 2011, 28(8): 077203
[14] WANG Yan, LIU Qi, LV Hang-Bing, LONG Shi-Bing, ZHANG Sen, LI Ying-Tao, LIAN Wen-Tai, YANG Jian-Hong**, LIU Ming . CMOS Compatible Nonvolatile Memory Devices Based on SiO2/Cu/SiO2 Multilayer Films[J]. Chin. Phys. Lett., 2011, 28(7): 077203
[15] YUE Song, DU Juan, ZHANG Yuan, ZHANG Yu-Heng. Metal-Insulator Transition in CuIr2(S1-xTex)4[J]. Chin. Phys. Lett., 2009, 26(11): 077203
Viewed
Full text


Abstract