Chin. Phys. Lett.  2015, Vol. 32 Issue (07): 077201    DOI: 10.1088/0256-307X/32/7/077201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Memory Behaviors Based on ITO/Graphene Oxide/Al Structure
YI Ming-Dong1,2, GUO Jia-Lin1, HU Bo1, XIA Xian-Hai1, FAN Qu-Li1, XIE Ling-Hai1**, HUANG Wei1,2**
1Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023
2Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816
Cite this article:   
YI Ming-Dong, GUO Jia-Lin, HU Bo et al  2015 Chin. Phys. Lett. 32 077201
Download: PDF(1401KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the memory properties of the ITO/graphene oxide/Al diodes. It is found that the devices show different memory behaviors with the diverse geometry and thickness of Al. When the thickness of the Al electrode is relatively thick, the device of the cross-point Al electrode shows a three-level memory effect, and the counterpart device of the cross-bar Al electrode exhibits a volatile static random access memory effect. When the thickness of the Al electrode is thinner, the above devices demonstrate a flash memory effect. The different memory behaviors of ITO/GO/Al diodes are ascribed to the mode and degree of reduction and oxidation of GO.
Received: 31 March 2015      Published: 30 July 2015
PACS:  72.80.Vp (Electronic transport in graphene)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  68.55.J- (Morphology of films)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/7/077201       OR      https://cpl.iphy.ac.cn/Y2015/V32/I07/077201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YI Ming-Dong
GUO Jia-Lin
HU Bo
XIA Xian-Hai
FAN Qu-Li
XIE Ling-Hai
HUANG Wei
[1] Zheng Q B, Li Z G, Yang J H and Kim J K 2014 Prog. Mater. Sci. 64 200
[2] Eda G, Fanchini G and Chhowalla M 2008 Nat. Nanotechnol. 3 270
[3] Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H B, Evmenenko G, Nguyen S T and Ruoff R S 2007 Nature 448 457
[4] Liu J Q, Lin Z Q, Liu T J, Yin Z Y, Zhou X Z, Chen S F, Xie L H, Boey F, Zhang H and Huang W 2010 Small 6 1536
[5] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
[6] Zhuge F, Hu B, He C, Zhou X, Liu Z and Li R W 2011 Carbon 49 3796
[7] Hong S K, Kim J E, Kim S O, Choi S Y and Cho B J 2010 IEEE Electron Device Lett. 31 1005
[8] Kim H D, Yun M J, Lee J H, Kim K H and Kim T G 2014 Sci. Rep. 4 4614
[9] Jeong H Y, Kim J Y, Kim J W, Hwang J O, Kim J E, Lee J Y, Yoon T H, Cho B J, Kim S O, Ruoff R S and Choi S Y 2010 Nano Lett. 10 4381
[10] Lin C C, Wu H Y, Lin N C and Lin C H 2014 Jpn. J. Appl. Phys. 53 05FD03
[11] Wang L H, Yang W, Sun Q Q, Zhou P, Lu H L, Ding S J and Zhang D W 2012 Appl. Phys. Lett. 100 063509
[12] Yi M D, Zhao L T, Fan Q L, Xia X H, Ai W, Xie L H, Liu X M, Shi N E, Wang W J, Wang Y P and Huang W 2011 J. Appl. Phys. 110 063709
[13] Yi M D, Cao Y, Ling H F, Du Z Z, Wang L Y, Yang T, Fan. Q L, Xie L H and Huang W 2014 Nanotechnology 25 185202
[14] He C L, Zhuge F, Zhou X F, Li M, Zhou G C, Liu Y W, Wang J Z, Chen B, Su W J, Liu Z P, Wu Y H, Cui P and Li R W 2009 Appl. Phys. Lett. 95 232101
[15] Hong S K, Kim J E, Kim S O and Cho B J 2011 J. Appl. Phys. 110 044506
[16] Ekiz O ? Urel M, Güner H, Mizrak A K and Dana A 2011 ACS Nano 5 2475
[17] Yan J A, Xian L and Chou M Y 2009 Phys. Rev. Lett. 103 086802
[18] Zhou M, Wang Y L, Zhai Y M, Zhai J F, Ren W, Wang F and Dong S J 2009 Chem. Eur. J. 15 6116
[19] Yao P P, Chen P L, Jiang L, Zhao H P, Zhu H F, Zhou D, Hu W P, Han B H and Liu M H 2010 Adv. Mater. 22 5008
[20] Teoh H F, Tao Y, Tok E S, Ho G W and Sow C H 2011 Appl. Phys. Lett. 98 173105
[21] Guo Y L, Wu B, Liu H T, Ma Y Q, Yang Y, Zheng J, Yu G and Liu Y Q 2011 Adv. Mater. 23 4626
[22] Liu J Q, Yin Z Y, Cao X H, Zhao F, Wang L H, Huang W and Zhang H 2013 Adv. Mater. 25 233
[23] Hummers W S and Offeman R E 1958 J. Am. Chem. Soc. 80 1339
[24] Liu J Q, Yin Z Y, Cao X H, Zhao F, Ling A P, Xie L H, Fan Q L, Boey F, Zhang H and Huang W 2010 ACS Nano 4 3987
[25] Liu Q, Long S B, Lv H B, Wang W, Niu J B, Huo Z L, Chen J N and Liu M 2010 ACS Nano 4 6162
[26] Lei B, Kwan W L, Shao Y and Yang Y 2009 Org. Electron. 10 1048
Related articles from Frontiers Journals
[1] Lijun Zhu, Lin Li, Xiaodong Fan, Zhongniu Xie, and Changgan Zeng. Effect of Boundary Scattering on Magneto-Transport Performance in BN-Encapsulated Graphene[J]. Chin. Phys. Lett., 2022, 39(9): 077201
[2] Wen-Han Dong, De-Liang Bao, Jia-Tao Sun, Feng Liu, and Shixuan Du. Manipulation of Dirac Fermions in Nanochain-Structured Graphene[J]. Chin. Phys. Lett., 2021, 38(9): 077201
[3] Hang Yang, Wei Chen, Ming-Yang Li, Feng Xiong, Guang Wang, Sen Zhang, Chu-Yun Deng, Gang Peng, and Shi-Qiao Qin. Ultrathin Al Oxide Seed Layer for Atomic Layer Deposition of High-$\kappa$ Al$_{2}$O$_{3}$ Dielectrics on Graphene[J]. Chin. Phys. Lett., 2020, 37(7): 077201
[4] Ran Tao, Lin Li, Li-Jun Zhu, Yue-Dong Yan, Lin-Hai Guo, Xiao-Dong Fan, and Chang-Gan Zeng. Giant-Capacitance-Induced Wide Quantum Hall Plateaus in Graphene on LaAlO$_{3}$/SrTiO$_{3}$ Heterostructures[J]. Chin. Phys. Lett., 2020, 37(7): 077201
[5] Ashkan Horri, Rahim Faez. Full-Quantum Simulation of Graphene Self-Switching Diodes[J]. Chin. Phys. Lett., 2019, 36(6): 077201
[6] Jian-Ying Chen, Lu Liu, Chun-Xia Li, Jing-Ping Xu. Chemical Vapor Deposition Growth of Large-Area Monolayer MoS$_{2}$ and Fabrication of Relevant Back-Gated Transistor[J]. Chin. Phys. Lett., 2019, 36(3): 077201
[7] Yu-Bing Wang, Wei-Hong Yin, Qin Han, Xiao-Hong Yang, Han Ye, Shuai Wang, Qian-Qian Lv, Dong-Dong Yin. The Nonlinear Electronic Transport in Multilayer Graphene on Silicon-on-Insulator Substrates[J]. Chin. Phys. Lett., 2017, 34(6): 077201
[8] Yan-Hua Li, Yong-Jian Xiong. Single-Parameter Quantum Pumping in Graphene Nanoribbons with Staggered Sublattice Potential[J]. Chin. Phys. Lett., 2017, 34(5): 077201
[9] Ze-Zhao He, Ke-Wu Yang, Cui Yu, Qing-Bin Liu, Jing-Jing Wang, Xu-Bo Song, Ting-Ting Han, Zhi-Hong Feng, Shu-Jun Cai. Comparative Study of Monolayer and Bilayer Epitaxial Graphene Field-Effect Transistors on SiC Substrates[J]. Chin. Phys. Lett., 2016, 33(08): 077201
[10] Tian-Yi Han, Guang-Wei Deng, Da Wei, Guo-Ping Guo. Multiplexing Read-Out of Charge Qubits by a Superconducting Resonator[J]. Chin. Phys. Lett., 2016, 33(04): 077201
[11] Sedighe Salimian, Mohammad Esmaeil Azim Araghi. Effect of Residual Charge Carrier on the Performance of a Graphene Field Effect Transistor[J]. Chin. Phys. Lett., 2016, 33(01): 077201
[12] HE Ze-Zhao, YANG Ke-Wu, YU Cui, LI Jia, LIU Qing-Bin, LU Wei-Li, FENG Zhi-Hong, CAI Shu-Jun. Improvement of Metal-Graphene Ohmic Contact Resistance in Bilayer Epitaxial Graphene Devices[J]. Chin. Phys. Lett., 2015, 32(11): 077201
[13] FAN Tian-Ju, YUAN Chun-Qiu, TANG Wei, TONG Song-Zhao, LIU Yi-Dong, HUANG Wei, MIN Yong-Gang, Arthur J. Epstein. A Novel Method of Fabricating Flexible Transparent Conductive Large Area Graphene Film[J]. Chin. Phys. Lett., 2015, 32(07): 077201
[14] LUO Wen-Gang, WANG Hua-Feng, CAI Kai-Ming, HAN Wen-Peng, TAN Ping-Heng, HU Ping-An, WANG Kai-You. Synthesis of Homogenous Bilayer Graphene on Industrial Cu Foil[J]. Chin. Phys. Lett., 2014, 31(06): 077201
[15] F. Sattari, E. Faizabadi. Wavevector Filtering through Monolayer and Bilayer Graphene Superlattices[J]. Chin. Phys. Lett., 2013, 30(9): 077201
Viewed
Full text


Abstract