Chin. Phys. Lett.  2015, Vol. 32 Issue (07): 077102    DOI: 10.1088/0256-307X/32/7/077102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
N-Doped Zigzag Graphene Nanoribbons on Si(001): a First-Principles Calculation
LI Jing, YANG Shen-Yuan**, LI Shu-Shen
The State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
LI Jing, YANG Shen-Yuan, LI Shu-Shen 2015 Chin. Phys. Lett. 32 077102
Download: PDF(1059KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The structural and electronic properties of N-doped zigzag graphene nanoribbons (N-ZGNRs) adsorbed on Si(001) substrates are investigated with first-principles density functional calculations. Compared with the free-standing N-ZGNRs, the energy difference between the substitutional doping at the edge and the inner sites is significantly decreased on the Si substrate. The distribution of the extra charge induced by the N substitutional dopant keeps the Friedel oscillation feature, and is a main effect that influences the C–Si bonding strength. When N is doped in regions with high C–Si bond densities, the strain induced by the dopant also plays an important role in determining the C–Si bonding interactions. Similar to the undoped case, the strong N-ZGNR/Si interaction destroys the antiferromagnetic coupling of the edge states in N-ZGNR, leading to a non-magnetic ground state for the N-ZGNR/Si heterostructures.

Received: 03 April 2015      Published: 30 July 2015
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  68.35.-p (Solid surfaces and solid-solid interfaces: structure and energetics)  
  73.20.At (Surface states, band structure, electron density of states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/7/077102       OR      https://cpl.iphy.ac.cn/Y2015/V32/I07/077102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Jing
YANG Shen-Yuan
LI Shu-Shen

[1] Han M Y et al 2007 Phys. Rev. Lett. 98 206805
[2] Qian H et al 2008 J. Am. Chem. Soc. 130 17970
[3] Nakada K and Fujita M 1996 Phys. Rev. B 54 17954
[4] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[5] Kim W and Kim K 2008 Nat. Nanotechnol. 3 408
[6] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
[7] Zhang Z H, Chen C F and Guo W L 2009 Phys. Rev. Lett. 103 187204
[8] Wang X et al 2009 Science 324 768
[9] Zheng X H et al 2009 Appl. Phys. Lett. 95 123109
[10] Xiang H J et al 2012 Phys. Rev. X 2 011003
[11] Zhao S Q et al 2014 Chin. Phys. B 23 067305
[12] Guo B et al 2007 Phys. Rev. Lett. 98 196803
[13] Yu S S et al 2008 Carbon 46 537
[14] Jiang J et al 2012 J. Chem. Phys. 136 014702
[15] Silva E C et al2009 Phys. Rev. Lett. 102 096803
[16] Zhou S Y et al 2007 Nat. Mater. 6 770
[17] Zhang Y et al 2009 Nature 459 820
[18] Zhang Z and Guo W 2009 Appl. Phys. Lett. 95 023107
[19] Koch R J et al2012 Phys. Rev. B 86 075401
[20] Zhao W et al 2013 J. Phys.: Condens. Matter 25 445002
[21] Yang H et al 2012 Science 336 1140
[22] Tayran C et al 2013 Phys. Rev. Lett. 110 176805
[23] Blöchl P E 1994 Phys. Rev. B 50 17953
[24] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
       Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[25] Li J, Yang S Y and Li S S 2015 Chin. Phys. Lett. 32 027101
[26] Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354
[27] Lawlor J A, Power S R and Ferreira M S 2013 Phys. Rev. B 88 205416
[28] Bácsi Á and Virosztek A 2010 Phys. Rev. B 82 193405
[29] Magda G Z et al 2014 Nature 514 608

Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 077102
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 077102
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 077102
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 077102
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 077102
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 077102
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 077102
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 077102
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 077102
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 077102
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 077102
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 077102
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 077102
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 077102
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 077102
Viewed
Full text


Abstract