Chin. Phys. Lett.  2015, Vol. 32 Issue (07): 077101    DOI: 10.1088/0256-307X/32/7/077101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electronic Structure and Optical Properties in Uranium Dioxide: the First Principle Calculations
SUI Peng-Fei1, DAI Zhen-Hong1**, ZHANG Xiao-Ling2, ZHAO Yin-Chang3
1Computational Physics Laboratory, Institute Opto-Electronic Information Technology, Yantai University, Yantai 264005
2Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190
3Department of Physics, Tsinghua University, Beijing 100084
Cite this article:   
SUI Peng-Fei, DAI Zhen-Hong, ZHANG Xiao-Ling et al  2015 Chin. Phys. Lett. 32 077101
Download: PDF(938KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report a study of the electronic structure and optical properties of uranium dioxide (UO2) based on the ab-initio density-functional theory and using the generalized gradient approximation. To correctly describe the strong correlation between 5f electrons of a uranium atom, we employ the on-site Hubbard U correction term and optimize the correlation parameter of the bulk uranium dioxide. Then we give the structural and electronic properties of the ground state of uranium dioxide. Based on the accurate electronic structure, we calculate the complex dielectric function of UO2 and the related optical properties, such as reflectivity, refractive index, extinction index, energy loss spectra, and absorption coefficient.
Received: 15 February 2015      Published: 30 July 2015
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/7/077101       OR      https://cpl.iphy.ac.cn/Y2015/V32/I07/077101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUI Peng-Fei
DAI Zhen-Hong
ZHANG Xiao-Ling
ZHAO Yin-Chang
[1] Yin Q and Savrasov S Y 2008 Phys. Rev. Lett. 100 225504
[2] Kinoshita M 2006 Proceeding Top. Fuel, 2006 International Meeting on LWR Fuel Performance (Salamanca, Spain, 22–26 October) p132
[3] Sui P F and Dai Z H 2015 Sci. Chin. Phys. Mech. Astron. 58 052002
[4] Faber J et al 1975 Phys. Rev. Lett. 35 1770
[5] Artioukov I A, Fechtchenko R M and Udovskii A L 2004 Nucl. Instrum. Methods Phys. Res. Sect. A 372 517
[6] Schoenes J 1978 J. Appl. Phys. 49 1463
[7] Chen Q, Lai X, Tang T et al 2010 J. Nucl. Mater. 401 118
[8] Yu S W et al 2011 Phys. Rev. B 83 165102
[9] Kresse G, Marsman M and Furthmüller J 2012 VASP the GUIDE Vienna
[10] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[11] Dudarev S L, Botton G A, Savrasasov S Y et al 1998 Phys. Rev. B 57 1505
[12] Dudarev S L, Castell M R, Botton G A et al 2000 Micron 31 363
[13] Dorado B, Jomard G, Freyss M et al 2010 Phys. Rev. B 82 035114
[14] Geng H Y, Chen Y and Kaneta Y 2008 Phys. Rev. B 77 104120
[15] Iwasawa M, Chen Y, Kaneta Y et al 2006 Mater. Trans. 47 2651
[16] Gajdo? M, Hummer K, Kresse G et al 2006 Phys. Rev. B 73 045112
[17] Saha S, Sinha T P and Mookerjee A 2000 Phys. Rev. B 62 8828
[18] Manzar A et al 2014 Chin. Phys. Lett. 31 067401
[19] Mosey N J and Carter E A 2007 Phys. Rev. B 76 155123
[20] Dorado B, Amadon B, Freyss M et al 2009 Phys. Rev. B 79 235125
[21] Gryaznov D, Heifets E and Kotomin E 2009 Phys. Chem. Chem. Phys. 11 7241
[22] Cox L E, Ellis W P, Cowan R D et al 1987 Phys. Rev. B 35 5761
[23] Yu S W, Tobin J G, Crowhurst J C et al 2011 Phys. Rev. B 83 165102
[24] Kudin K N, Scuseria G E and Martin R L 2002 Phys. Rev. Lett. 89 266402
[25] Jollet F, Petit T, Gota S et al 1997 J. Phys.: Condens. Matter 9 9393
[26] Hasegawa A and Yamagami H 1992 Prog. Theor. Phys. Suppl. 108 27
[27] Schoenes J 1980 Phys. Rep. 63 301
[28] Norton P R, Tapping R L, Creber D K et al 1980 Phys. Rev. B 21 2575
[29] Chen Q, Lai X, Bai B et al 2010 Appl. Surf. Sci. 256 3047
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 077101
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 077101
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 077101
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 077101
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 077101
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 077101
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 077101
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 077101
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 077101
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 077101
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 077101
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 077101
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 077101
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 077101
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 077101
Viewed
Full text


Abstract