CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Electronic Structure and Optical Properties in Uranium Dioxide: the First Principle Calculations |
SUI Peng-Fei1, DAI Zhen-Hong1**, ZHANG Xiao-Ling2, ZHAO Yin-Chang3 |
1Computational Physics Laboratory, Institute Opto-Electronic Information Technology, Yantai University, Yantai 264005 2Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 3Department of Physics, Tsinghua University, Beijing 100084
|
|
Cite this article: |
SUI Peng-Fei, DAI Zhen-Hong, ZHANG Xiao-Ling et al 2015 Chin. Phys. Lett. 32 077101 |
|
|
Abstract We report a study of the electronic structure and optical properties of uranium dioxide (UO2) based on the ab-initio density-functional theory and using the generalized gradient approximation. To correctly describe the strong correlation between 5f electrons of a uranium atom, we employ the on-site Hubbard U correction term and optimize the correlation parameter of the bulk uranium dioxide. Then we give the structural and electronic properties of the ground state of uranium dioxide. Based on the accurate electronic structure, we calculate the complex dielectric function of UO2 and the related optical properties, such as reflectivity, refractive index, extinction index, energy loss spectra, and absorption coefficient.
|
|
Received: 15 February 2015
Published: 30 July 2015
|
|
PACS: |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
|
|
|
[1] Yin Q and Savrasov S Y 2008 Phys. Rev. Lett. 100 225504 [2] Kinoshita M 2006 Proceeding Top. Fuel, 2006 International Meeting on LWR Fuel Performance (Salamanca, Spain, 22–26 October) p132 [3] Sui P F and Dai Z H 2015 Sci. Chin. Phys. Mech. Astron. 58 052002 [4] Faber J et al 1975 Phys. Rev. Lett. 35 1770 [5] Artioukov I A, Fechtchenko R M and Udovskii A L 2004 Nucl. Instrum. Methods Phys. Res. Sect. A 372 517 [6] Schoenes J 1978 J. Appl. Phys. 49 1463 [7] Chen Q, Lai X, Tang T et al 2010 J. Nucl. Mater. 401 118 [8] Yu S W et al 2011 Phys. Rev. B 83 165102 [9] Kresse G, Marsman M and Furthmüller J 2012 VASP the GUIDE Vienna [10] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [11] Dudarev S L, Botton G A, Savrasasov S Y et al 1998 Phys. Rev. B 57 1505 [12] Dudarev S L, Castell M R, Botton G A et al 2000 Micron 31 363 [13] Dorado B, Jomard G, Freyss M et al 2010 Phys. Rev. B 82 035114 [14] Geng H Y, Chen Y and Kaneta Y 2008 Phys. Rev. B 77 104120 [15] Iwasawa M, Chen Y, Kaneta Y et al 2006 Mater. Trans. 47 2651 [16] Gajdo? M, Hummer K, Kresse G et al 2006 Phys. Rev. B 73 045112 [17] Saha S, Sinha T P and Mookerjee A 2000 Phys. Rev. B 62 8828 [18] Manzar A et al 2014 Chin. Phys. Lett. 31 067401 [19] Mosey N J and Carter E A 2007 Phys. Rev. B 76 155123 [20] Dorado B, Amadon B, Freyss M et al 2009 Phys. Rev. B 79 235125 [21] Gryaznov D, Heifets E and Kotomin E 2009 Phys. Chem. Chem. Phys. 11 7241 [22] Cox L E, Ellis W P, Cowan R D et al 1987 Phys. Rev. B 35 5761 [23] Yu S W, Tobin J G, Crowhurst J C et al 2011 Phys. Rev. B 83 165102 [24] Kudin K N, Scuseria G E and Martin R L 2002 Phys. Rev. Lett. 89 266402 [25] Jollet F, Petit T, Gota S et al 1997 J. Phys.: Condens. Matter 9 9393 [26] Hasegawa A and Yamagami H 1992 Prog. Theor. Phys. Suppl. 108 27 [27] Schoenes J 1980 Phys. Rep. 63 301 [28] Norton P R, Tapping R L, Creber D K et al 1980 Phys. Rev. B 21 2575 [29] Chen Q, Lai X, Bai B et al 2010 Appl. Surf. Sci. 256 3047 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|