Chin. Phys. Lett.  2015, Vol. 32 Issue (07): 076802    DOI: 10.1088/0256-307X/32/7/076802
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
A Novel Method of Fabricating Flexible Transparent Conductive Large Area Graphene Film
FAN Tian-Ju1, YUAN Chun-Qiu1, TANG Wei1, TONG Song-Zhao1, LIU Yi-Dong2**, HUANG Wei1,2, MIN Yong-Gang1,3**, Arthur J. Epstein3
1Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210046
2State Key Laboratory of Organic Electronics and Information displays at Yancheng and Fountain Global Photoelectric Technology Co., Ltd., Yancheng 224000
3Department of Physics and Chemistry & Biochemistry, the Ohio State University, Columbus 43210, USA
Cite this article:   
FAN Tian-Ju, YUAN Chun-Qiu, TANG Wei et al  2015 Chin. Phys. Lett. 32 076802
Download: PDF(1679KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We fabricate flexible conductive and transparent graphene films on position-emission-tomography substrates and prepare large area graphene films by graphite oxide sheets with the new technical process. The multi-layer graphene oxide sheets can be chemically reduced by HNO3 and HI to form a highly conductive graphene film on a substrate at lower temperature. The reduced graphene oxide sheets show a high conductivity sheet with resistance of 476 Ω/sq and transmittance of 76% at 550 nm (6 layers). The technique used to produce the transparent conductive graphene thin film is facile, inexpensive, and can be tunable for a large area production applied for electronics or touch screens.
Received: 22 December 2014      Published: 30 July 2015
PACS:  68.65.Pq (Graphene films)  
  72.80.Vp (Electronic transport in graphene)  
  78.67.Wj (Optical properties of graphene)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/7/076802       OR      https://cpl.iphy.ac.cn/Y2015/V32/I07/076802
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FAN Tian-Ju
YUAN Chun-Qiu
TANG Wei
TONG Song-Zhao
LIU Yi-Dong
HUANG Wei
MIN Yong-Gang
Arthur J. Epstein
[1] Novoselov K S et al 2004 Science 306 666
[2] Dikin D A et al 2007 Nature 448 457
[3] Stankovich S et al 2007 Carbon 45 1558
[4] Peng H et al 2012 Nat. Chem. 4 281
[5] Karthick R, Brindha M, Selvaraj M and Ramu S 2013 J. Colloid Interface Sci. 406 69
[6] Liu J, Davis N R, Liu D S and Hammond P T 2012 J. Mater. Chem. 22 15534
[7] Kim S H, Yu Y, Li Y Z, Xu T and Zhi J F 2012 J. Mater. Chem. 22 18306
[8] Khrapach I, Withers F, Bointon T H, Polyushkin D K, Barnes W L, Russo S and Craciun M F 2012 Adv. Mater. 24 2844
[9] Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R and Ruoff R S 2010 Adv. Mater. 22 3906
[10] Hecht D S, Hu L and Irvin G 2011 Adv. Mater. 23 1482
[11] Zheng Q, Zhang B, Lin X, Shen X, Yousefi N, Huang Z D and Kim J K 2012 J. Mater. Chem. 22 25072
[12] Li X, Zhang G, Bai X, Sun X, Wang X, Wang E and Dai H 2008 Nat. Nanotechnol. 3 538
[13] Kim J, Cote L J, Kim F, Yuan W, Shull K R and Huang J 2010 J. Am. Chem. Soc. 132 8180
[14] Zheng Q, Shi L, Ma P C, Xue Q, Li J, Tang Z and Yang J 2013 RSC Adv. 3 4680
[15] Shen X, Lin X, Yousefi N, Jia J and Kim J K 2014 Carbon 66 84
[16] Zheng Q, Ip W H, Lin X, Yousefi N, Yeung K K, Li Z and Kim J K 2011 ACS Nano 5 6039
[17] Dong X, Li B, Wei A, Cao X, Chan-Park M B, Zhang H and Chen P 2011 Carbon 49 2944
[18] Lin X, Jia J, Yousefi N, Shen X and Kim J K 2013 J. Mater. Chem. C 1 6869
[19] Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q and Zhang H 2011 Small 7 1876
[20] Hummers Jr W S and Offeman R E 1958 J. Am. Chem. Soc. 80 1339
[21] Geng Y, Wang S J and Kim J K 2009 J. Colloid Interface Sci. 336 592
[22] Aboutalebi S H, Gudarzi M M, Zheng Q B and Kim J K 2011 Adv. Funct. Mater. 21 2978
[23] Kim F, Cote L J and Huang J 2010 Adv. Mater. 22 1954
[24] Becerril H A, Mao J, Liu Z, Stoltenberg R M, Bao Z and Chen Y 2008 ACS Nano 2 463
[25] Eda G, Fanchini G and Chhowalla M 2008 Nat. Nanotechnol. 3 270
[26] Gilje S, Han S, Wang M, Wang K L and Kaner R B 2007 Nano Lett. 7 3394
[27] Kim J, Cote L J, Kim F and Huang J 2010 J. Am. Chem. Soc. 132 260
[28] Shin H J, Kim K K, Benayad A, Yoon S M, Park H K, Jung I S and Lee Y H 2009 Adv. Funct. Mater. 19 1987
[29] Gao Y, Chen X, Xu H, Zou Y, Gu R, Xu M and Chen H 2010 Carbon 48 4475
[30] Li X, Wang H, Robinson J T, Sanchez H, Diankov G and Dai H 2009 J. Am. Chem. Soc. 131 15939
[31] Contreras M A, Barnes T, van de Lagemaat J, Rumbles G, Coutts T J, Weeks C and Britz D A 2007 J. Phys. Chem. C 111 14045
[32] Rowell M W, Topinka M A, McGehee M D, Prall H J, Dennler G, Sariciftci N S and Gruner G 2006 Appl. Phys. Lett. 88 233506
[33] Gruner G 2006 J. Mater. Chem. 16 3533
[34] Hu L, Gruner G, Gong J and Hornbostel B 2007 Appl. Phys. Lett. 90 093124
Related articles from Frontiers Journals
[1] Jie Jiang, Long Yan, and Haiping Fang. Effect of Oxide Content of Graphene Oxide Membrane on Remarkable Adsorption for Calcium Ions[J]. Chin. Phys. Lett., 2021, 38(10): 076802
[2] Xueyan Li, Han Lin, Yuejin Zhao, and Baohua Jia. Diffraction-Limited Imaging with a Graphene Metalens[J]. Chin. Phys. Lett., 2020, 37(10): 076802
[3] Zhibin Zhang, Jiajie Qi, Mengze Zhao, Nianze Shang, Yang Cheng, Ruixi Qiao, Zhihong Zhang, Mingchao Ding, Xingguang Li, Kehai Liu, Xiaozhi Xu, Kaihui Liu, Can Liu, and Muhong Wu. Scrolled Production of Large-Scale Continuous Graphene on Copper Foils[J]. Chin. Phys. Lett., 2020, 37(10): 076802
[4] Hang Yang, Wei Chen, Ming-Yang Li, Feng Xiong, Guang Wang, Sen Zhang, Chu-Yun Deng, Gang Peng, and Shi-Qiao Qin. Ultrathin Al Oxide Seed Layer for Atomic Layer Deposition of High-$\kappa$ Al$_{2}$O$_{3}$ Dielectrics on Graphene[J]. Chin. Phys. Lett., 2020, 37(7): 076802
[5] Gang Li, Hong-Wei Cheng, Li-Fang Guo, Kai-Ying Wang, Zai-Jun Cheng. An Efficiency Enhanced Graphene/n-Si Schottky Junction for Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 076802
[6] S. Fahad, M. Ali, S. Ahmed, S. Khan, S. Alam, S. Akhtar. Effect of Metal Contact and Rapid Thermal Annealing on Electrical Characteristics of Graphene Matrix[J]. Chin. Phys. Lett., 2017, 34(10): 076802
[7] Ze-Zhao He, Ke-Wu Yang, Cui Yu, Qing-Bin Liu, Jing-Jing Wang, Xu-Bo Song, Ting-Ting Han, Zhi-Hong Feng, Shu-Jun Cai. Comparative Study of Monolayer and Bilayer Epitaxial Graphene Field-Effect Transistors on SiC Substrates[J]. Chin. Phys. Lett., 2016, 33(08): 076802
[8] XIANG Lang, WU Jian, MA Shuang-Ying, WANG Fang, ZHANG Kai-Wang. Nanoindentation Models of Monolayer Graphene and Graphyne under Point Load Pattern Studied by Molecular Dynamics[J]. Chin. Phys. Lett., 2015, 32(09): 076802
[9] LUO Wen-Gang, WANG Hua-Feng, CAI Kai-Ming, HAN Wen-Peng, TAN Ping-Heng, HU Ping-An, WANG Kai-You. Synthesis of Homogenous Bilayer Graphene on Industrial Cu Foil[J]. Chin. Phys. Lett., 2014, 31(06): 076802
[10] XIE Nan, GONG Hui-Qi, ZHOU Zhi, GUO Xiao-Dong, YAN Shi-Chao, SUN Qian, XING Sirui, WU Wei, PEI Shin-shem, BAO Jiming, SHAN Xin-Yan, GUO Yang, LU Xing-Hua . Visualization of a Maze-Like Reconstruction of Graphene on a Copper Surface at the Atomic Scale[J]. Chin. Phys. Lett., 2013, 30(5): 076802
[11] WANG Wen-Rong, LIANG Chen, LI Tie, YANG Heng, LU Na, WANG Yue-Lin. Graphene Domains Synthesized on Electroplated Copper by Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2013, 30(2): 076802
[12] HUANG Qing-Song, GUO Li-Wei, WANG Wen-Jun, WANG Gang, WANG Wan-Yan, JIA Yu-Ping, LIN Jing -Jing, LI Kang, CHEN Xiao-Long. Raman Spectrum of Epitaxial Graphene on SiC (0001) by Pulsed Electron Irradiation[J]. Chin. Phys. Lett., 2010, 27(4): 076802
Viewed
Full text


Abstract