CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Heat Transport in Double-Bond Linear Chains of Fullerenes |
WEI Liang, XU Zhi-Cheng, ZHENG Dong-Qin, ZHANG Wei, ZHONG Wei-Rong** |
Department of Physics and Siyuan Laboratory, Jinan University, Guangzhou 510632
|
|
Cite this article: |
WEI Liang, XU Zhi-Cheng, ZHENG Dong-Qin et al 2015 Chin. Phys. Lett. 32 076501 |
|
|
Abstract Heat transport in one kind of double-bond linear chains of fullerenes (C60's) is investigated by the classical nonequilibrium molecular dynamics method. It is found that the negative differential thermal resistance (NDTR) is more likely to occur at larger temperature difference and shorter length. In addition, with the increase of the length, the thermal conductivity of the chains increases, and NDTR region shrinks and vanishes in the end. The temperature profiles reveal that a large temperature jump exists at a high-temperature boundary of the chains when NDTR occurs. These results may be helpful for designing thermal devices where low-dimensional C60 polymers can be used.
|
|
Received: 03 February 2015
Published: 30 July 2015
|
|
PACS: |
65.80.-g
|
(Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)
|
|
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
|
61.48.-c
|
(Structure of fullerenes and related hollow and planar molecular structures)
|
|
|
|
|
[1] Li N B et al 2012 Rev. Mod. Phys. 84 1045 [2] Zhong W R, Zheng D Q and Hu B B 2012 Nanoscale 4 5217 [3] Li B W, Wang L and Casati G 2004 Phys. Rev. Lett. 93 184301 [4] He D H, Buyukdagli S and Hu B 2009 Phys. Rev. B 80 104302 [5] Ai B Q, Zhong W R and Hu B 2011 Phys. Rev. E 83 052102 [6] Yang N, Zhang G and Li B W 2009 Appl. Phys. Lett. 95 033107 [7] Loh G C, Teo E H T and Tay B K 2012 J. Appl. Phys. 112 103515 [8] Lee J et al 2012 Nano Lett. 12 3491 [9] Shao Z G, Ai B Q and Zhong W R 2014 Appl. Phys. Lett. 104 013106 [10] Ai B Q, An M and Zhong W R 2013 J. Chem. Phys. 138 034708 [11] Sundqvist B 1999 Physica B 265 208 [12] Rao A M et al 1993 Science 259 955 [13] Burgos E et al 2000 Phys. Rev. Lett. 85 2328 [14] Rafii-Tabar H 2008 Computational Physics of Carbon Nanotubes (New York: Cambridge University Press) [15] Tersoff J 1989 Phys. Rev. B 39 5566 [16] Brenner D W 1990 Phys. Rev. B 42 9458 [17] Nose S 1984 J. Chem. Phys. 81 511 [18] Hoover W G 1985 Phys. Rev. A 31 1695 [19] Wu G and Li B W 2007 Phys. Rev. B 76 085424 [20] Hu J N, Ruan X L and Chen Y P 2009 Nano Lett. 9 2730 [21] Marconnet A M, Panzer M A and Goodson K E 2013 Rev. Mod. Phys. 85 1295 [22] Pan R Q 2011 Chin. Phys. Lett. 28 066104 [23] Hu J N et al 2011 Appl. Phys. Lett. 99 113101 [24] Ai B Q, Zhong W R and Hu B B 2012 J. Phys. Chem. C 116 13810 [25] Zhang M P et al 2011 Physica B 406 4639 [26] He D H et al 2010 Phys. Rev. E 81 041131 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|