Chin. Phys. Lett.  2015, Vol. 32 Issue (07): 076401    DOI: 10.1088/0256-307X/32/7/076401
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
The 1.85 GPa AlSc Bulk Alloy with Abundant Nanoscale Growth Twins
ZHUO Long-Chao1,2**, LIANG Shu-Hua1, ZHANG Tao3
1School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048
2National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Materials, Tsinghua University, Beijing 100084
3Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Department of Materials Science and Engineering, Beihang University, Beijing 100191
Cite this article:   
ZHUO Long-Chao, LIANG Shu-Hua, ZHANG Tao 2015 Chin. Phys. Lett. 32 076401
Download: PDF(2542KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An in situ ultrahigh-strength ductile Al50Sc50 bulk alloy is produced by the copper mold casting method with a composite microstructure of micron-/submicron-sized grains and nanoscale twins. According to the microstructural investigations, hierarchical nanotwinned lamellar AlSc bundles with embedded micron-/submicron-sized Al2Sc and AlSc2 are observed. The as-cast alloy displays a unique act of ultrahigh strength of ~1.85 GPa together with pronounced work hardening and a large plasticity of ~14%. Further microstructural investigations on deformed specimens indicate that abundant hierarchical nanotwinned lamellar AlSc bundles are effective to dissipate localization of shear stress or block dislocations from spreading throughout the alloy and hinder the propagation of microcracks formed by local stress transition.
Received: 27 January 2015      Published: 30 July 2015
PACS:  64.70.kd (Metals and alloys)  
  81.30.Fb (Solidification)  
  62.20.-x (Mechanical properties of solids)  
  81.30.-t (Phase diagrams and microstructures developed by solidification and solid-solid phase transformations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/7/076401       OR      https://cpl.iphy.ac.cn/Y2015/V32/I07/076401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHUO Long-Chao
LIANG Shu-Hua
ZHANG Tao
[1] Gleiter H 1989 Prog. Mater. Sci. 33 223
[2] Chen J, Lu L and Lu K 2006 Scr. Mater. 54 1913
[3] Dao M, Lu L, Asaro R J, De Hosson J T M and Ma E 2007 Acta Mater. 55 4041
[4] Lu K 2010 Science 328 319
[5] Lu L, Wang L B, Ding B Z and Lu K 2000 J. Mater. Res. 15 270
[6] Li Y J, Mueller J, H?ppel H W, G?ken M and Blum W 2007 Acta Mater. 55 5708
[7] Yan W L, Liu X H, Huang J Y and Chen L 2013 Mater. Des. 49 520
[8] Wu X X, San X Y, Gong Y L, Chen L P, Li C J and Zhu X K 2013 Mater. Des. 47 295
[9] Wang Y, Chen M, Zhou F and Ma E 2002 Nature 419 912
[10] Jin Z H, Gumbsch P, Ma E, Albe K, Lu K, Hahn H and Gleiter H 2006 Scr. Mater. 54 1163
[11] Wang Y B and Sui M L 2009 Appl. Phys. Lett. 94 021909
[12] Zhao Y H, Zhu Y T, Liao X Z, Horita Z and Langdon T G 2006 Appl. Phys. Lett. 89 121906
[13] Lu K, Lu L and Suresh S 2009 Science 324 349
[14] Lu L, Zhu T, Shen Y F, Dao M, Lu K and Suresh S 2009 Acta Mater. 57 5165
[15] Lu L, Shen Y F, Chen X H, Qian L H and Lu K 2004 Science 304 422
[16] Sutton A P and Balluffi R W 1995 Interfaces Cryst. Mater. (New York: Oxford Sci. Publ. Clarendon Press) chap 12 p 704
[17] Chen X H, Lu L and Lu K 2011 Scr. Mater. 64 311
[18] Weertman J R 2002 Nanostructured Materials; Processing, Properties and Applications (Norwich: William Andrew Publishing) chap 1 p 1
[19] Koch C C 2003 Scr. Mater. 49 657
[20] Shen T D and Koch C C 1996 Acta Mater. 44 753
[21] Park J M, Kim K B, Kim D H, Mattern N, Li R, Liu G and Eckert J 2010 Intermetallics 18 1829
[22] Chen Z P, Yu H, Wu Y, Wang H, Liu X J and Lu Z P 2012 Mater. Lett. 84 59
[23] Zhuo L C, Pang S J, Wang H and Zhang T 2009 Chin. Phys. Lett. 26 066402
[24] Zhuo L C, Yin E H, Wang H and Zhang T 2012 Intermetallics 23 199
[25] Zhuo L C, Wang H and Zhang T 2014 Mater. Lett. 124 28
[26] Lohwongwatana B, Schroers J and Johnson W L 2006 Phys. Rev. Lett. 96 075503
[27] Llorca J, Needleman A and Suresh S 1991 Acta Metall. Mater. 39 2317
[28] Nabarro F R N 1967 Theory Cryst. Dislocations (London: Oxford University Press) p 402
[29] Nakamoto Y, Yuasa M, Chen Y Q, Kusuda H and Mabuchi M 2008 Scr. Mater. 58 731
[30] Zhou Y K, Jing R, Ma M Z and Liu R P 2013 Chin. Phys. Lett. 30 116201
[31] Li S R, Wang S F and Wang R 2011 Physica B 406 4529
[32] Zhuo L C, Pang S J, Wang H and Zhang T 2010 J. Alloys Compd. 504s S117
Related articles from Frontiers Journals
[1] Gang-Ling Hao, Yu-Chuan Li, Xing-Fu Wang, Wei-Guo Wang, Xin-Fu Wang, Dan Wang, Xian-Yu Li. Fe–Al Phase Formation Studied by Internal Friction during Heating Process[J]. Chin. Phys. Lett., 2020, 37(3): 076401
[2] Yun-Kai Zhou, Xing Zhang, Shu-Guang Liu, Ming-Zhen Ma, Ri-Ping Liu. High Performance ZrNbAl Alloy with Low Thermal Expansion Coefficient[J]. Chin. Phys. Lett., 2018, 35(8): 076401
[3] SHUI Lu-Yu, YAN Biao. Crystallization Kinetics Study on Magnetron-Sputtered Amorphous TiAl Alloy Thin Films[J]. Chin. Phys. Lett., 2014, 31(04): 076401
[4] ZHOU Yun-Kai, JING Ran, MA Ming-Zhen, LIU Ri-Ping. Tensile Strength of Zr-Ti Binary Alloy[J]. Chin. Phys. Lett., 2013, 30(11): 076401
[5] LÜ, Yong-Jun**. Enhanced Surface Premelting of Ni90Si10 Nanoparticles[J]. Chin. Phys. Lett., 2012, 29(4): 076401
[6] WANG Ping, ZHAO Jian-Bo, TANG Shao-Qiang. Dynamic Simulation for Hysteresis in Shape Memory Alloy under Tension[J]. Chin. Phys. Lett., 2008, 25(5): 076401
Viewed
Full text


Abstract