Chin. Phys. Lett.  2015, Vol. 32 Issue (07): 076201    DOI: 10.1088/0256-307X/32/7/076201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Thermally Controllable Break Junctions with High Bandwidths and High Integrabilities
MENG Chao1, HUANG Pu1, ZHOU Jing-Wei1, DUAN Chang-Kui2, DU Jiang-Feng1**
1Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026
2Department of Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
MENG Chao, HUANG Pu, ZHOU Jing-Wei et al  2015 Chin. Phys. Lett. 32 076201
Download: PDF(702KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Break junctions are important in generating nanosensors and single molecular devices. The mechanically controllable break junction is the most widely used method for a break junction due to its simplicity and stability. However, the bandwidths of traditional devices are limited to about a few hertz. Moreover, when using traditional methods it is hard to allow independent control of more than one junction. Here we propose on-chip thermally controllable break junctions to overcome these challenges. This is verified by using finite element analysis. Adopting microelectromechanical systems produces features of high bandwidth and independent controllability to this new break junction system. The proposed method will have a wide range of applications on on-chip high speed independent controllable and highly integrated single molecule devices.
Received: 15 April 2015      Published: 30 July 2015
PACS:  62.25.-g (Mechanical properties of nanoscale systems)  
  61.46.-w (Structure of nanoscale materials)  
  73.40.Jn (Metal-to-metal contacts)  
  37.90.+j (Other topics in mechanical control of atoms, molecules, and ions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/7/076201       OR      https://cpl.iphy.ac.cn/Y2015/V32/I07/076201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MENG Chao
HUANG Pu
ZHOU Jing-Wei
DUAN Chang-Kui
DU Jiang-Feng
[1] Agra?t N, Yeyati A L, and Van Ruitenbeek J M 2003 Phys. Rep. 377 81
[2] Bocko M F, Stephenson K A and Koch R H 1988 Phys. Rev. Lett. 61 726
[3] Zhou C, Muller C J, Deshpande M R, Sleight J W and Reed M A 1995 Appl. Phys. Lett. 67 1160
[4] Reed M A, Zhou C, Muller C J, Burgin T P and Tour J M 1997 Science 278 252
[5] Chen F, Hihath J, Huang Z, Li X and Tao N J 2007 Annu. Rev. Phys. Chem. 58 535
[6] Tao N J 2006 Nat. Nanotechnol. 1 173
[7] Van Ruitenbeek J M, Alvarez A, Pineyro I, Grahmann C, Joyez P, Devoret M H, Esteve D and Urbina C 1996 Rev. Sci. Instrum. 67 108
[8] Van Ruitenbeek J, Scheer E and Weber H B 2005 Contacting Individual Molecules Using Mechanically Controllable Break Junctions (New York: Springer)
[9] Maloney J M, Schreiber D S and DeVoe D L 2004 J. Micromech. Microeng. 14 226
[10] Sinclair M J 2000 Seventh InterSoc. Conf. Therm. ThermoMech. Phenom. Electron. Syst. (Las Vegas, Nevada, USA 23–26 May 2000) p 132
[11] Que L, Park J S and Gianchandani Y B 2001 J. Microelectromech. Syst. 10 247
[12] Wang J, Sansoz F, Huang J, Liu Y, Sun S, Zhang Z and Mao S X 2013 Nat. Commun. 4 1742
[13] Dietiker M, Buzzi S, Pigozzi G, L?ffler J F and Spolenak R 2011 Acta Mater. 59 2180
[14] Marszalek P E, Greenleaf W J, Li H, Oberhauser A F and Fernandez J M 2000 Proc. Natl. Acad. Sci. USA 97 6282
[15] Muller C, van Ruitenbeek J and de Jongh L 1992 Phys. Rev. Lett. 69 140
[16] Trouwborst M L 2009 PhD Dissertation (University of Groningen)
[17] Schirm C, Matt M, Pauly F, Cuevas J C, Nielaba P and Scheer E 2013 Nat. Nanotechnol. 8 645
[18] Huang X M H, Zorman C A, Mehregany M and Roukes M L 2003 Nature 421 496
[19] Kay S M 2013 Fundamentals Stat. Signal Process.: Practical Algorithm Dev. (Englewood Cliffs: Pearson Education)
[20] Mertz J, Marti O and Mlynek J 1993 Appl. Phys. Lett. 62 2344
[21] Pernice W H P, Li M and Tang H X 2009 J. Appl. Phys. 105 014508
Related articles from Frontiers Journals
[1] Xiang-Yue Liu, Hong Zhang, Xin-Lu Cheng. Interaction between Dislocation and Twinning Boundary under Incremental Loading in $\alpha$-Titanium[J]. Chin. Phys. Lett., 2018, 35(11): 076201
[2] Han Zhou, Fu-Zeng Zhou, Yong-Qing Shen, Bin Liao, Jing-Jing Yu, Xu Zhang. Effect of Bias Voltage on Microstructure and Mechanical Properties of Nanocomposite ZrCN Films Deposited by Filtered Cathodic Vacuum Arc[J]. Chin. Phys. Lett., 2018, 35(6): 076201
[3] De-Min Zhao, Jian-Lin Liu. New Insights on the Deflection and Internal Forces of a Bending Nanobeam[J]. Chin. Phys. Lett., 2017, 34(9): 076201
[4] XIANG Lang, WU Jian, MA Shuang-Ying, WANG Fang, ZHANG Kai-Wang. Nanoindentation Models of Monolayer Graphene and Graphyne under Point Load Pattern Studied by Molecular Dynamics[J]. Chin. Phys. Lett., 2015, 32(09): 076201
[5] ZHOU Yu-Nong, HUANG Gan-Yun. Buckling of Elastic Thin Films on Compliant Substrates for Determination of Surface Parameters[J]. Chin. Phys. Lett., 2014, 31(11): 076201
[6] Bumned Soodchomshom. Pseudo Spin Torque Induced by Strain Field of Dirac Fermions in Graphene[J]. Chin. Phys. Lett., 2013, 30(12): 076201
[7] WANG Wei, QIAN Jian-Qiang, LI Ying-Zi, CHEN Zhu-Li. Dual-Frequency Atomic Force Microscopy Imaging Method and Experiment Based on Commercial AFM Platform[J]. Chin. Phys. Lett., 2013, 30(6): 076201
[8] YAN Ren-Jie, WU Jing-Hua, LI Cong, XU Gao-Jie, ZHOU Lu-Wei. Temperature Effects of Electrorheological Fluids Based on One-Dimensional Calcium and Titanium Precipitate[J]. Chin. Phys. Lett., 2013, 30(1): 076201
[9] LIU Jian-Lin**, XIA Re, ZHOU Yue-Ting . Stiction of a Nano-Beam with Surface Effect[J]. Chin. Phys. Lett., 2011, 28(11): 076201
[10] GU Fang, ZHANG Jia-Hong**, XU Lin-Hua, LIU Qing-Quan, LI Min . Influence of Surface Effects on the Elastic Properties of Silicon Nanowires with Different Cross Sections[J]. Chin. Phys. Lett., 2011, 28(10): 076201
[11] TAN Hao, WANG Hai-Ying**, XIA Meng-Fen, KE Fu-Jiu, BAI Yi-Long . Molecule Statistical Thermodynamics Simulation of Nanoindentation of Single Crystal Copper with EAM Potential[J]. Chin. Phys. Lett., 2011, 28(4): 076201
[12] LI He, YANG Zhou, ZHANG Yi-Min, WEN Bang-Chun. Deflections of Nanowires with Consideration of Surface Effects[J]. Chin. Phys. Lett., 2010, 27(12): 076201
[13] HAN Mei, ZHANG Yong, ZHENG Hong-Bo. Effect of Uniaxial Strain on Band Gap of Armchair-Edge Graphene Nanoribbons[J]. Chin. Phys. Lett., 2010, 27(3): 076201
[14] GUAN Zhi-Qiang, LUO Gang, MONTELIUS Lars, XU Hong-Xing,. Electromechanical Behavior of Interdigitated SiO2 Cantilever Arrays[J]. Chin. Phys. Lett., 2010, 27(2): 076201
[15] TANG Yi-Zhe, ZHENG Zhi-Jun, XIA Meng-Fen, BAI Yi-Long. A Unified Guide to Two Opposite Size Effects in Nano Elastic Materials[J]. Chin. Phys. Lett., 2009, 26(12): 076201
Viewed
Full text


Abstract