Chin. Phys. Lett.  2015, Vol. 32 Issue (07): 076101    DOI: 10.1088/0256-307X/32/7/076101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
TEM Characterization of Helium Bubbles in T91 and MNHS Steels Implanted with 200 keV He Ions at Different Temperatures
WANG Ji1,2,3, GAO Xing1, WANG Zhi-Guang1**, WEI Kong-Fang1, YAO Cun-Feng1, CUI Ming-Huan1, SUN Jian-Rong1, LI Bing-Sheng1, PANG Li-Long1, ZHU Ya-Bin1, LUO Peng1, CHANG Hai-Long1, ZHANG Hong-Peng1, ZHU Hui-Ping1,2, WANG Dong1,2, DU Yang-Yang1,2, XIE Er-Qing3
1Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000
2University of Chinese Academy of Sciences, Beijing 100049
3School of Physical Science and Technology, Lanzhou University, Lanzhou 730000
Cite this article:   
WANG Ji, GAO Xing, WANG Zhi-Guang et al  2015 Chin. Phys. Lett. 32 076101
Download: PDF(1422KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Modified novel high silicon steel (MNHS, a newly developed reduced-activation martensitic alloy) and commercial alloy T91 are implanted with 200 keV He2+ ions to a dose of 5×1020 ions/m2 at 300, 450 and 550°C. Transmission electron microscopy (TEM) is used to characterize the size and morphology of He bubbles. With the increase of the implantation temperature, TEM observations indicate that bubbles increase in size and the proportion of 'brick shaped' cuboid bubbles increases while the proportion of polyhedral bubbles decreases in both the steel samples. For the samples implanted at the same temperature, the average size of He bubbles in MNHS is smaller than that in T91. This might be due to the abundance of boundaries and precipitates in MNHS, which provide additional sites for the trapping of He atoms, thus reduce the susceptibility of MNHS to He embrittlement.
Received: 30 September 2014      Published: 30 July 2015
PACS:  61.72.Ff (Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))  
  61.72.J- (Point defects and defect clusters)  
  61.72.sh (Impurity distribution)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/7/076101       OR      https://cpl.iphy.ac.cn/Y2015/V32/I07/076101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Ji
GAO Xing
WANG Zhi-Guang
WEI Kong-Fang
YAO Cun-Feng
CUI Ming-Huan
SUN Jian-Rong
LI Bing-Sheng
PANG Li-Long
ZHU Ya-Bin
LUO Peng
CHANG Hai-Long
ZHANG Hong-Peng
ZHU Hui-Ping
WANG Dong
DU Yang-Yang
XIE Er-Qing
[1] Rimmer D E and Cottrell A H 1957 Philos. Mag. 2 1345
[2] Kemp R, Cottrell G and Bhadeshia K D H 2006 Energy Mater. 1 103
[3] Zheng H et al 2014 Acta Phys. Sin. 63 106102 (in Chinese)
[4] Odette G R et al 2008 Annu. Rev. Mater. Res. 38 471
[5] Ukai S and Fujiwara M 2002 J. Nucl. Mater. 307 749
[6] Lee E H et al 1992 Metall. Trans. A 23 1977
[7] Huang Q et al 2013 J. Nucl. Mater. 442 S2
[8] Klueh R L et al 2002 J. Nucl. Mater. 307 455
[9] http://www.srim.org
[10] Standard Practice for Neutron Radiation Damage Simulation by Charged-particle Irradiation (ASTM Designation E 521-89 1989, Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia) 12.02 p D-9
[11] Tyler S K and Goodhew P J 1979 J. Microsc. 116 55
[12] Goodhew P J and Tyler S K 1981 Proc. R. Soc. London A 377 151
[13] Trinkaus H and Singh B N 2003 J. Nucl. Mater. 323 229
[14] Zhao C W et al 2009 Chin. Phys. B 18 2464
[15] Li Y F et al 2013 Chin. Phys. Lett. 30 126101
[16] Lane P L and Goodhew P J 1983 Philos. Mag. A 48 965
[17] Xie H X et al 2013 Chin. Phys. B 22 010204
[18] Chen L Q et al 2008 Chin. Phys. B 17 0662
[19] Gao F et al 2006 J. Nucl. Mater. 351 133
[20] Fu C C and Willaime 2007 J. Nucl. Mater. 367 244
[21] Jiang S N et al 2013 Acta Phys. Sin. 62 166801 (in Chinese)
[22] Li Y F et al 2014 Chin. Phys. Lett. 31 036101
[23] Zhang C H et al 2008 J. Nucl. Mater. 375 185
[24] Yamamoto T et al 2009 J. Nucl. Mater. 386 338
[25] Edmondson P D et al 2013 J. Nucl. Mater. 434 210
[26] Garner F A and Wolfer W G 1981 J. Nucl. Mater. 102 143
[27] Venker H and Ehrlich K 1975 J. Nucl. Mater. 56 115
Related articles from Frontiers Journals
[1] Zhi-Hui Wang, Xiao-Lan Wang, Jun-Lin Liu, Jian-Li Zhang, Chun-Lan Mo, Chang-Da Zheng, Xiao-Ming Wu, Guang-Xu Wang, Feng-Yi Jiang. Effect of Green Quantum Well Number on Properties of Green GaN-Based Light-Emitting Diodes[J]. Chin. Phys. Lett., 2018, 35(8): 076101
[2] Chang-Hao Su, Chong-Hong Zhang, Yi-Tao Yang, Zhao-Nan Ding, Yu-Guang Chen, Akihiko Kimura. Hardening of an ODS Ferritic Steel after Helium Implantation and Thermal Annealing[J]. Chin. Phys. Lett., 2018, 35(5): 076101
[3] Li-Long Pang, Bing-Sheng Li, Tie-Long Shen, Xing Gao, Xue-Song Fang, Ning Gao, Cun-Feng Yao, Kong-Fang Wei, Ming-Huan Cui, Jian-Rong Sun, Hai-Long Chang, Wen-Hao He, Qing Huang, Zhi-Guang Wang. Structural Distortion and Defects in Ti$_{3}$AlC$_{2}$ irradiated by Fe and He Ions[J]. Chin. Phys. Lett., 2018, 35(2): 076101
[4] Zhi-Yu Lin, Zhi-Bin Chen, Jin-Cheng Zhang, Sheng-Rui Xu, Teng Jiang, Jun Luo, Li-Xin Guo, Yue Hao. Polar Dependence of Threading Dislocation Density in GaN Films Grown by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(2): 076101
[5] Ai-Xing Li, Chun-Lan Mo, Jian-Li Zhang, Xiao-Lan Wang, Xiao-Ming Wu, Guang-Xu Wang, Jun-Lin Liu, Feng-Yi Jiang. Effect of Mg-Preflow for p-AlGaN Electron Blocking Layer on the Electroluminescence of Green LEDs with V-Shaped Pits[J]. Chin. Phys. Lett., 2018, 35(2): 076101
[6] Wei-Jing Qi, Long-Quan Xu, Chun-Lan Mo, Xiao-Lan Wang, Jie Ding, Guang-Xu Wang, Shuan Pan, Jian-Li Zhang, Xiao-Ming Wu, Jun-Lin Liu, Feng-Yi Jiang. The Efficiency Droop of InGaN-Based Green LEDs with Different Superlattice Growth Temperatures on Si Substrates via Temperature-Dependent Electroluminescence[J]. Chin. Phys. Lett., 2017, 34(7): 076101
[7] Mei-Xiong Tang, Xu Wang, Yan-Wen Zhang, Dong Han, Yun-Biao Zhao, Zi-Qiang Zhao. Irradiation Effects on the Retention of Hydrogen in Al$_{2}$O$_{3}$[J]. Chin. Phys. Lett., 2016, 33(06): 076101
[8] LI Yuan-Fei, SHEN Tie-Long, GAO Xing, YAO Cun-Feng, WEI Kong-Fang, SUN Jian-Rong, LI Bing-Sheng, ZHU Ya-Bin, PANG Li-Long, CUI Ming-Huan, CHANG Hai-Long, WANG Ji, ZHU Hui-Ping, HU Bi-Tao, WANG Zhi-Guang. Cavity Swelling in Three Ferritic-Martensitic Steels Irradiated by 196 MeV Kr Ions[J]. Chin. Phys. Lett., 2013, 30(12): 076101
[9] YANG Hong-Bin, ZHANG Xiang-Jiu. Highly Strained Si Films with Ultra-low Dislocation Density Grown on Virtual Substrates of Thin Thickness[J]. Chin. Phys. Lett., 2009, 26(4): 076101
[10] ZHANG Li-Qing, ZHANG Chong-Hong, YANG Yi-Tao, YAO Cun-Feng, LI Bing-Sheng, SUN You-Mei, SONG Shu-Jian. Surface Disorder of GaN Irradiated by Highly Charged Arq+-Ions[J]. Chin. Phys. Lett., 2009, 26(3): 076101
[11] ZHANG Li-Qing, ZHANG Chong-Hong, YANG Yi-Tao, YAO Cun-Feng, LI Bing-Sheng, JIN Yun-Fan, SUN You-Mei, SONG Shu-Jian. Surface Erosion of GaN Bombarded by Highly Charged 208Pbq+-Ions[J]. Chin. Phys. Lett., 2008, 25(7): 076101
[12] LI Ming, MA Xiang-Yang, YANG De-Ren. Kinetics of Nitrogen Indiffusion in Czochralski Silicon Annealed in Nitrogen Ambient[J]. Chin. Phys. Lett., 2008, 25(2): 076101
[13] LU Xiang-Dang, ZHANG Xiang-Jiu, YANG Hong-Bin, FAN Yong-Liang, HUANG Wei-Ning, SUN Yan-Qing. MBE Growth of Highly Relaxed Si0.45 Ge0.55 Films with Very Low Misfit Dislocation Density on Si (001) Substrates[J]. Chin. Phys. Lett., 2006, 23(1): 076101
[14] LU Min, , CHANG Xin, LI Zi-Lan, , YANG Zhi-Jian, , ZHANG Guo-Yi, , ZHANG Bei,. Etch Pits and Threading Dislocations in GaN Films Grown by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2003, 20(3): 076101
[15] YIN Long-Wei, YUAN Quan, LI Mu-Sen, LIU Yu-Xian, XU Bin, HAO Zhao-Yin. Twins Diamond Crystals Grown at High Temperature and High Pressure from the Fe-Ni-C System [J]. Chin. Phys. Lett., 2002, 19(9): 076101
Viewed
Full text


Abstract