Chin. Phys. Lett.  2015, Vol. 32 Issue (07): 075202    DOI: 10.1088/0256-307X/32/7/075202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Modeling of the Distinctive Ground-State Atomic Oxygen Density Profile in Plasma Needle Discharge at Atmospheric Pressure
QIAN Mu-Yang1**, YANG Cong-Ying2, CHEN Xiao-Chang1, NI Geng-Song1, LIU-Song1, WANG De-Zhen3
1Department of Physics, Nanchang University, Nanchang 330031
2School of Medical, Nanchang University, Nanchang 330031
3School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023
Cite this article:   
QIAN Mu-Yang, YANG Cong-Ying, CHEN Xiao-Chang et al  2015 Chin. Phys. Lett. 32 075202
Download: PDF(667KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A two-dimensional coupled model of neutral gas flow and plasma dynamics is presented to explain the two distinctive patterns of ground-state atomic oxygen density profiles that have been observed experimentally in the helium plasma needle discharge. When the gas flow rate is 0.25 standard liter per minute (SLM), the discharge is substantially sustained by the electron impact ionization of air near a dielectric surface, corresponding to the radial density peaks along the axis of the symmetry. However, as the flow rate is 1.1 SLM, Penning ionization between helium metastables and surrounding air dominates the ionization reactions and peaks at an off-center position (r=0.9 mm), which indicates the ring-shaped density distribution. The critical feeding gas flow rate is found to be around 0.4 SLM. The peak density is on the order of 1020 m?3 in our case. Previous reports of a flow-dependent bacterial killing pattern and ground-state atomic oxygen measurement support our simulation results.
Received: 25 March 2015      Published: 30 July 2015
PACS:  52.65.-y (Plasma simulation)  
  52.77.-j (Plasma applications)  
  52.80.Hc (Glow; corona)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/7/075202       OR      https://cpl.iphy.ac.cn/Y2015/V32/I07/075202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QIAN Mu-Yang
YANG Cong-Ying
CHEN Xiao-Chang
NI Geng-Song
LIU-Song
WANG De-Zhen
[1] Huang J, Chen W, Li H, Wang X Q, Lv G H, Khosa M L, Guo M, Feng K C, Wang P Y and Yang S Z 2011 J. Appl. Phys. 109 053305
[2] Zhang Y T, Guo Y, Wang D W, Feng Y and Ma T C 2010 Chin. Phys. Lett. 27 068201
[3] Zhang J F, Bian X C, Chen Q, Liu F P and Liu Z W 2009 Chin. Phys. Lett. 26 035203
[4] Stoffels E, Kieft I E, Sladek R E J, Bedem L J M van den, Laan E P van der and Steinbuch M 2006 Plasma Sources Sci. Technol. 15 S169
[5] Ye D, Wu S Q, Yu Y, Liu L, Lu X P and Wu Y 2014 Appl. Phys. Lett. 104 103105
[6] Lu X, Naidis G V, Laroussi M and Ostrikov K 2014 Phys. Rep. 540 123
[7] Woedtke T V, Reuter S, Masur K and Weltmann K D 2013 Phys. Rep. 530 291
[8] Lu X, Laroussi M and Puech V 2012 Plasma Sources Sci. Technol. 21 034005
[9] Goree J, Liu B, Drake D and Stoffels E 2006 IEEE Trans. Plasma Sci. 34 1317
[10] Goree J, Liu B and Drake D 2006 J. Phys. D 39 3479
[11] Sakiyama Y, Knake N, Schr?der D, Winter J, Schulz-von der Gathen V and Graves D B 2010 Appl. Phys. Lett. 97 151501
[12] Kelly S and Turner M M 2013 J. Appl. Phys. 114 123301
[13] Liu X Y, Pei X K, Lu X P and Liu D W 2014 Plasma Sources Sci. Technol. 23 035007
[14] Breden D, Miki K and Raja L L 2012 Plasma Sources Sci. Technol. 21 034011
[15] Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722
[16] Wu S, Lu X and Pan Y 2014 Phys. Plasmas 21 073509
[17] Sakiyama Y and Graves D B 2009 Plasma Sources Sci. Technol. 18 025022
Related articles from Frontiers Journals
[1] Zeren Zhang and Jiping Huang. Transformation Plasma Physics[J]. Chin. Phys. Lett., 2022, 39(7): 075202
[2] Yutian Miao, G. Z. Hao, Yue Liu, H. D. He, W. Chen, Y. Q. Wang, A. K. Wang, and M. Xu. Synergistic Influences of Kinetic Effects from Thermal Particles and Fast Ions on Internal Kink Mode[J]. Chin. Phys. Lett., 2021, 38(8): 075202
[3] Xiang-Mei Liu, Yuan-Hong Song, Wei Jiang, Wen-Zhu Jia. Effect of Parallel-Plate Geometry on Mode Transition Behavior in Argon Microplasmas: Two-Dimensional Simulation[J]. Chin. Phys. Lett., 2018, 35(4): 075202
[4] FU Yang-Yang, LUO Hai-Yun, ZOU Xiao-Bing, WANG Xin-Xin. Influence of Forbidden Processes on Similarity Law in Argon Glow Discharge at Low Pressure[J]. Chin. Phys. Lett., 2014, 31(07): 075202
[5] LU Wei, CHEN Shao-Yong, TANG Chang-Jian, BAI Xing-Yu, ZHANG Xin-Jun, HU You-Jun. Nonlinear Dependence of the Synergetic Current by the Combined Effect of ECCD and LHCD on the Power Ratio on HL-2A Tokamak[J]. Chin. Phys. Lett., 2013, 30(6): 075202
[6] WANG Yi-Nan, LIU Yue, LIN Guo-Qiang. A Computational Study of Radio Frequency Atmospheric Pressure Discharge in Nitrogen and Oxygen Mixture Gases[J]. Chin. Phys. Lett., 2013, 30(3): 075202
[7] HUANG Yong-Sheng, WANG Nai-Yan, TANG Xiu-Zhang, SHI Yi-Jin, ZHANG Shan. Double-Relativistic-Electron-Layer Proton Acceleration with High-Contrast Circular-Polarization Laser Pulses[J]. Chin. Phys. Lett., 2013, 30(2): 075202
[8] DUAN Wen-Xue, MA Zhi-Wei, and WU Bin. Combining Effects between LHW and IBW Injections on EAST[J]. Chin. Phys. Lett., 2012, 29(8): 075202
[9] LI Ming-Zhu, AN Zheng-Hua**, ZHOU Lei, MAO Fei-Long, WANG Heng-Liang . Strong Coupling between Propagating and Localized Surface Plasmons in Plasmonic Cavities[J]. Chin. Phys. Lett., 2011, 28(7): 075202
[10] CHEN Zhao-Quan, **, LIU Ming-Hai***, ZHOU Qi-Yan, HU Ye-Lin, YANG An, ZHU Long-Ji, HU Xi-Wei . Numerical Reproduction of Spatio-Temporal Evolution of Surface Plasmon Polaritons at Dielectric-Plasma Interface[J]. Chin. Phys. Lett., 2011, 28(4): 075202
[11] LIU Xiang-Mei, SONG Yuan-Hong, WANG You-Nian. One-Dimensional Fluid Model for Dust Particles in Dual-Frequency Capacitively Coupled Silane Discharges[J]. Chin. Phys. Lett., 2009, 26(8): 075202
[12] FENG Shuo, HE Feng, OUYANG Ji-Ting. Mechanism of Striation in Dielectric Barrier Discharge[J]. Chin. Phys. Lett., 2007, 24(8): 075202
[13] LIU Ming-Hai, HU Xi-Wei, JIANG Zhong-He, ZHANG Shu, PAN Yuan. Finite-Difference Time-Domain Analysis of Wave Propagation in a Thin Plasma Layer[J]. Chin. Phys. Lett., 2006, 23(2): 075202
[14] FANG Tong-Zhen, OUYANG Jian-Ming, WANG Long. Simulation of Chemical Processes in Repetitively Pulsed Atmospheric Plasmas[J]. Chin. Phys. Lett., 2005, 22(11): 075202
[15] WANG Yan-Hui, WANG De-Zhen. Modes of Homogeneous Barrier Discharge at Atmospheric Pressure in Helium[J]. Chin. Phys. Lett., 2004, 21(11): 075202
Viewed
Full text


Abstract