Chin. Phys. Lett.  2015, Vol. 32 Issue (07): 075201    DOI: 10.1088/0256-307X/32/7/075201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Direct Laser-Driven Quasi-Isentropic Compression on HEAVEN-I Laser
ZHANG Pin-Liang1, TANG Xiu-Zhang1**, LI Ye-Jun1, WANG Zhao1, TIAN Bao-Xian1, YIN Qian1, LU Ze1, XIANG Yi-Huai1, GAO Zhi-Xing1, LI Jing1, HU Feng-Ming1, GONG Zi-Zheng2
1High Power Excimer Laser Laboratory, China Institute of Atomic Energy, Beijing 102413
2National Key Laboratory of Science and Technology on Reliability and Environment Engineering, Beijing Institute of Spacecraft Environment Engineering, Beijing 100094
Cite this article:   
ZHANG Pin-Liang, TANG Xiu-Zhang, LI Ye-Jun et al  2015 Chin. Phys. Lett. 32 075201
Download: PDF(713KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The HEAVEN-I laser is used for direct drive quasi-isentropic compression up to ~18 GPa in samples of aluminum without being temporal pulse shaped. The monotonically increasing loading is with a rise time over 17 ns. The compression history is well reproduced by the 1D radiation hydrodynamics simulation. We find that a small shock precursor where the backward integration method cannot process is formed at the beginning of illumination. We compare the loading process of HEAVEN-I with the typical profile (concave down, prefect pulse shape), the results show that a typical profile can obtain more slowly rising and higher pressure, and the shock precursor has significant effects on temperature and entropy production. However, it is demonstrated that the HEAVEN-I is an excellent optical source for direct laser-driven quasi-isentropic compression, even if it produces more temperature rise and entropy than the typical profile.
Received: 02 December 2014      Published: 30 July 2015
PACS:  52.57.-z (Laser inertial confinement)  
  52.35.Tc (Shock waves and discontinuities)  
  42.62.-b (Laser applications)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/7/075201       OR      https://cpl.iphy.ac.cn/Y2015/V32/I07/075201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Pin-Liang
TANG Xiu-Zhang
LI Ye-Jun
WANG Zhao
TIAN Bao-Xian
YIN Qian
LU Ze
XIANG Yi-Huai
GAO Zhi-Xing
LI Jing
HU Feng-Ming
GONG Zi-Zheng
[1] Becker A, Nettelmann N, Holst B and Redmer R 2013 Phys. Rev. B 88 045122
[2] Seagle C T, Davis J P, Martin M R and Hanshaw H L 2013 Appl. Phys. Lett. 102 244104
[3] Brown J L, Alexander C S, Asay J R, Vogler T J, Dolan D H and Belof J L 2014 J. Appl. Phys. 115 043530
[4] Wang J, Smith R F, Eggert J H, Braun D G, Boehly T R, Patterson J R, Celliers P M, Jeanloz R, Collins G W and Duffy T S 2013 J. Appl. Phys. 114 023513
[5] Amadou N, Brambrink E, Benuzzi-Mounaix A, Vinci T, Resseguier T, Mazevet S, Morard G, Guyot F, Ozaki N, Miyanisi K and Koenig M 2012 AIP Conf. Proc. 1426 1525
[6] Lorenz K T, Edwards M J, Jankowski A F, Pollaine S M, Smith R F and Remington B A 2006 High Energy Density Phys. 2 113
[7] Edwards J, Lorenz K T, Remington B A, Pollaine S, Colvin J, Braun D, Lasinski B F, Reisman D, McNaney J M, Greenough J A, Wallace R, Louis H and Kalantar D 2004 Phys. Rev. Lett. 92 075002
[8] Amadou N, Brambrink E, Benuzzi-Mounaix A, Huser G, Guyot F, Mazevet S, Morard G, Resseguier T de, Vinci T, Myanishi K, Ozaki N, Kodama R, Boehly T, Henry O, Raffestion D and Koening M 2013 High Energy Density Phys. 9 243
[9] Ping Y, Coppari F, Hicks D G, Yaakobi B, Fratanduono D E, Hamel S, Eggert J H, Rygg J R, Smith R F, Swift D C, Braun D G, Boehly T R and Collins G W 2013 Phys. Rev. Lett. 111 065502
[10] Swift D C and Johnson R P 2005 Phys. Rev. E 71 066401
[11] Tian B X, Wang Zhao, Dai H, Xiang Y H, Liang J and Tang X Z 2013 At. Energy Sci. Technol. 47 1633 (in Chinese)
[12] Shaw M J, Baily R and Key M H 1993 Laser Part. Beams 11 331
[13] Hayes D 2001 SAND 2001-1440 (USA: Sandia National Laboratories)
[14] Hayes D and Hall C 2002 AIP Conf. Proc. 620 1177
[15] Li M, Zhao M J, Zhang H P, Yuan H, Zhao J H and Sun C W 2010 Acta Armamentarii 31 1084 (in Chinese)
[16] Wang G H, Bai J S, Sun C W, Mo J J, Wang G J, Zhao J H, Tan F L and Hu X J 2008 Chin. J. High Press. Phys. 22 149 (in Chinese)
[17] Computer code HYADES, version 01.05.11 (Cascade Applied Sciences Inc., Golden, Colorado 1998)
[18] Xue Q X, Jiang S E, Wang Z B, Zhang H, Ye X S and Zhang Y S 2013 High Power Laser Part. Beams 25 2891 (in Chinese)
Related articles from Frontiers Journals
[1] Huan Zheng, Qian Chen, Baoqing Meng, Junsheng Zeng, Baolin Tian. On the Nonlinear Growth of Multiphase Richtmyer–Meshkov Instability in Dilute Gas-Particles Flow[J]. Chin. Phys. Lett., 2020, 37(1): 075201
[2] Meng Li, Wen-Hua Ye. Successive Picket Drive for Mitigating the Ablative Richtmyer–Meshkov Instability[J]. Chin. Phys. Lett., 2019, 36(2): 075201
[3] HUANG Cheng-Wu, SONG Tian-Ming, ZHAO Yang, ZHU Tuo, SHANG Wan-Li, XIONG Gang, ZHANG Ji-Yan, YANG Jia-Min, JIANG Shao-En. Effective Opacity for Gold-Doped Foam Plasmas[J]. Chin. Phys. Lett., 2012, 29(9): 075201
[4] LI Zhi-Chao, **, ZHENG Jian, JIANG Xiao-Hua, WANG Zhe-Bin, YANG Dong, ZHANG Huan, LI San-Wei, WANG Feng, PENG Xiao-Shi, YIN Qiang, ZHU Fang-Hua, GUO Liang, YUAN Peng, LIU Shen-Ye, DING Yong-Kun . Methods of Generation and Detailed Characterization of Millimeter-Scale Plasmas Using a Gasbag Target[J]. Chin. Phys. Lett., 2011, 28(12): 075201
[5] ZHENG Huan, WANG An-Ting, XU Li-Xin, MING Hai. Spectral Analysis using Linearly Chirped Gaussian Pulse Stacking[J]. Chin. Phys. Lett., 2009, 26(7): 075201
[6] WU Zheng-Wei, ZHANG Wen-Lu, LI Ding, YANG Wei-Hong. Effect of Magnetic Field and Equilibrium Flow on Rayleigh-Taylor Instability[J]. Chin. Phys. Lett., 2004, 21(10): 075201
Viewed
Full text


Abstract