Chin. Phys. Lett.  2015, Vol. 32 Issue (07): 074210    DOI: 10.1088/0256-307X/32/7/074210
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Kuznetsov–Ma Soliton in Coupled Quantum Wells
DU Ying-Jie1, XIE Xiao-Tao1, YU Jin-Ying1, BAI Jin-Tao1,2**
1College of Physics, Northwest University, Xi'an 710068
2Institute of Photonics and photon-technology, Northwest University, Xi'an 710068
Cite this article:   
DU Ying-Jie, XIE Xiao-Tao, YU Jin-Ying et al  2015 Chin. Phys. Lett. 32 074210
Download: PDF(511KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We show the possibility to generate Kuznetsov–Ma solitons based on bound-to-bound intersubband transitions in an asymmetric two-coupled well structure. By presenting the modulation instability of the nonlinear system provided by the interaction between light fields and quantum wells, we show that the plane wave with small perturbation can evolve into periodic trains of pulses at high while controllable repetition rates. It is found that the formation of Kuznetsov–Ma solitons as well as their period is determined by the combination of group velocity dispersion, Kerr nonlinearity and the initial amplitude of the background wave. The present research may be useful for generating subpicosecond and femtosecond pulses.

Received: 31 March 2015      Published: 30 July 2015
PACS:  42.25.-p (Wave optics)  
  42.65.-k (Nonlinear optics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/7/074210       OR      https://cpl.iphy.ac.cn/Y2015/V32/I07/074210
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DU Ying-Jie
XIE Xiao-Tao
YU Jin-Ying
BAI Jin-Tao

[1] Peregrine D 1983 J. Austral. Math. Soc. Ser. B 25 16
[2] Dysthe K B and Trulsen K 1999 Phys. Scr. T82 48
[3] Voronovich V V et al 2008 J. Fluid Mech. 604 263
[4] He J S et al 2012 Chin. Phys. Lett. 29 060509
[5] Zhang J F and Hu W C 2013 Chin. Opt. Lett. 11 031901
[6] Garrett C and Gemmrich J 2009 Phys. Today 62 62
[7] Chabchoub A et al 2011 Phys. Rev. Lett. 106 204502
[8] Kuznetsov E 1977 Sov. Phys. Dokl. 22 507
     Ma Y C 1979 Stud. Appl. Math. 60 43 [9] Akhmediev N and Korneev V I 1987 Theor. Math. Phys. 72 809
[10] Liu H C and Capasso F 2000 Intersubband Transitions in Quantum Wells: Physics and Device Applications (New York: Academic Press)
[11] Wen W X et al 2009 Phys. Rev. A 79 033825
[12] Atanasov R et al 1996 Phys. Rev. Lett. 76 1703
[13] Silvestri L et al 2002 Eur. Phys. J. B 27 89
[14] Faist J et al 1996 Opt. Lett. 21 985
[15] Serapiglia G B et al 2000 Phys. Rev. Lett. 84 1019
[16] Paspalakis E et al 2006 Phys. Rev. B 73 125344
[17] Tamborenea P I and Metiu H 1998 Phys. Lett. A 240 265
[18] Li J H 2007 Phys. Rev. B 75 155329
[19] Biancalana F et al 2006 Phys. Rev. A 73 063826
[20] Yang W X et al 2008 Phys. Rev. A 77 033838
[21] Du Y J et al 2015 Acta Opt. Sin. 35 0227002 (in Chinese)
[22] Tai K et al 1986 Phys. Rev. Lett. 56 135
[23] Boyd R W et al 1986 Optical Instabilities (London: Cambridge University Press)
[24] Arecchi F T and Harrison R G 1987 Instabilities and Chaos in Quantum Optics (Berlin: Springer)
[25] Dudley J M, Genty G, Dias F, Kibler B and Akhmediev N 2009 Opt. Express 17 21497
[26] Simaeys G V, Emplit P and Haelterman M 2001 Phys. Rev. Lett. 87 033902
[27] Akhmediev N N 2001 Nature 413 267
[28] Beechman J, Hutsebaut X, Haelterman M and Neyts K 2007 Opt. Express 15 11185
[29] Tai K, Hasegawa A and Tomita A 1986 Phys. Rev. Lett. 56 135
[30] Greer E J, Patrick D M, Wigley P G J and Taylor J R 1989 Electron. Lett. 25 1246
[31] Agrawal G P 1987 Phys. Rev. Lett. 59 880
[32] Scully M O and Zubairy M S 1997 Quantum Optics (London: Cambridge University Press) p 161
[33] Kibler B, Fatome J, Finot C, Millot G, Genty G, Wetzel B, Akhmediev N, Dias F and Dudley J M 2012 Sci. Rep. 2 463
[34] Kibler B, Fatome J, Finot C, Millot G, Genty G, Wetzel B, Akhmediev N, Dias F and Dudley J M 2010 Nat. Phys. 6 790

Related articles from Frontiers Journals
[1] Gangyi Zhu, Mufei Tian, M. Almokhtar, Feifei Qin, Binghui Li, Mengyao Zhou, Fei Gao, Ying Yang, Xin Ji, Siqing He, and Yongjin Wang. Whispering Gallery Mode Lasing Performance's Evolution of Floating GaN Microdisks Varying with Their Thickness[J]. Chin. Phys. Lett., 2022, 39(12): 074210
[2] Xin Tong  and Daomu Zhao. Propagation Characteristics of Exponential-Cosine Gaussian Vortex Beams[J]. Chin. Phys. Lett., 2021, 38(8): 074210
[3] Xue-Chun Zhao, Lei Zhang, Rong Lin, Shu-Qin Lin, Xin-Lei Zhu, Yang-Jian Cai, and Jia-Yi Yu. Hermite Non-Uniformly Correlated Array Beams and Its Propagation Properties[J]. Chin. Phys. Lett., 2020, 37(12): 074210
[4] Yingchun Ding, Xinjing Lv, Youquan Jia, Bin Zhang, Zhaoyang Chen, Qiang Liu. Wavefront Shaping for Fast Focusing Light through Scattering Media Based on Parallel Wavefront Optimization and Superpixel Method[J]. Chin. Phys. Lett., 2020, 37(2): 074210
[5] Li-Qi Yu, Xin-Yu Xu, Zhen-Feng Zhang, Qi Feng, Bin Zhang, Ying-Chun Ding, Qiang Liu. Label-Free Microscopic Imaging Based on the Random Matrix Theory in Wavefront Shaping[J]. Chin. Phys. Lett., 2019, 36(11): 074210
[6] Zhao-Wang Wu, Ye-Wan Ma, Li-Hua Zhang, Xun-Chang Yin, Sheng-Bao Zhan. Optical Tunability of Silver-Dielectric-Silver Multi-Layered Cylindrical Nanotubes Using Quasi-Static Approximation[J]. Chin. Phys. Lett., 2018, 35(11): 074210
[7] You-Quan Jia, Qi Feng, Bin Zhang, Wei Wang, Cheng-You Lin, Ying-Chun Ding. Superpixel-Based Complex Field Modulation Using a Digital Micromirror Device for Focusing Light through Scattering Media[J]. Chin. Phys. Lett., 2018, 35(5): 074210
[8] Wan-Xia Huang, Guo-Ren Zhao, Juan-Juan Guo, Mao-Sheng Wang, Jian-Ping Shi. Nearly Perfect Absorbers Operating Associated with Fano Resonance in the Infrared Range[J]. Chin. Phys. Lett., 2016, 33(08): 074210
[9] MA Ye-Wan, WU Zhao-Wang, ZHANG Li-Hua, LIU Wan-Fang, ZHANG Jie. Theoretical Study of Local Surface Plasmon Resonances on a Dielectric-Ag Core-Shell Nanosphere Using the Discrete-Dipole Approximation Method[J]. Chin. Phys. Lett., 2015, 32(09): 074210
[10] HU Jin-Hua, HUANG Yong-Qing, REN Xiao-Min, DUAN Xiao-Feng, LI Ye-Hong, WANG Qi, ZHANG Xia, WANG Jun. Modeling of Fano Resonance in High-Contrast Resonant Grating Structures[J]. Chin. Phys. Lett., 2014, 31(06): 074210
[11] ZENG Xiang-Kai, WEI Lai. Analytic Solutions for the Spectral Responses of RCA-Grating-Based Waveguide Devices[J]. Chin. Phys. Lett., 2012, 29(12): 074210
[12] LING Xiao-Hui, LUO Hai-Lu, TANG Ming, WEN Shuang-Chun. Enhanced and Tunable Spin Hall Effect of Light upon Reflection of One-Dimensional Photonic Crystal with a Defect Layer[J]. Chin. Phys. Lett., 2012, 29(7): 074210
[13] WANG Chun-Fang, BAI Yan-Feng, GUO Hong-Ju, CHENG Jing. Beam Splitting in Induced Inhomogeneous Media[J]. Chin. Phys. Lett., 2012, 29(6): 074210
[14] LU Zhi-Xin, YU Li, **, LIU Bing-Can, , ZHANG Kai, SONG Gang, . Femtosecond Pulse Propagation in a Symmetric Gap Surface Plasmon Polariton Waveguide[J]. Chin. Phys. Lett., 2011, 28(8): 074210
[15] ZHANG Zhi-Wei, **, WEN Ting-Dun, WU Zhi-Fang . A Novel Method for Heightening Sensitivity of Prism Coupler-Based SPR Sensor[J]. Chin. Phys. Lett., 2011, 28(5): 074210
Viewed
Full text


Abstract