Chin. Phys. Lett.  2015, Vol. 32 Issue (07): 074209    DOI: 10.1088/0256-307X/32/7/074209
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Wide-Field Vibrational Phase Contrast Imaging Based on Coherent Anti-Stokes Raman Scattering Holography
LV Yong-Gang1, JI Zi-Heng1, DONG Da-Shan1, SHI Ke-Bin2**, GONG Qi-Huang1,2
1State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871
2Collaborative Innovation Center of Quantum Matter, Beijing 100871
Cite this article:   
LV Yong-Gang, JI Zi-Heng, DONG Da-Shan et al  2015 Chin. Phys. Lett. 32 074209
Download: PDF(1717KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose and implement a wide-field vibrational phase contrast detection to obtain imaging of imaginary components of third-order nonlinear susceptibility in a coherent anti-Stokes Raman scattering (CARS) microscope with full suppression of the non-resonant background. This technique is based on the unique ability of recovering the phase of the generated CARS signal based on holographic recording. By capturing the phase distributions of the generated CARS field from the sample and from the environment under resonant illumination, we demonstrate the retrieval of imaginary components in the CARS microscope and achieve background free coherent Raman imaging.
Received: 26 May 2015      Published: 30 July 2015
PACS:  42.65.-k (Nonlinear optics)  
  78.47.nj (Four-wave mixing spectroscopy)  
  78.47.jh (Coherent nonlinear optical spectroscopy)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/7/074209       OR      https://cpl.iphy.ac.cn/Y2015/V32/I07/074209
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LV Yong-Gang
JI Zi-Heng
DONG Da-Shan
SHI Ke-Bin
GONG Qi-Huang
[1] Hu X G, Li Y H, Lin H S, Wang D S and Qi X 2011 Chin. Phys. Lett. 28 043402
[2] Pu Y, Centurion M and Psaltis D 2008 Appl. Opt. 47 A103
[3] Hsieh C L, Grange R, Pu Y and Psaltis D 2009 Opt. Express 17 2880
[4] Schilling B W, Poon T C, Indebetouw G, Storrie B, Shinoda K, Suzuki Y and Wu M H 1997 Opt. Lett. 22 1506
[5] Rosen J and Brooker G 2008 Nat. Photon. 2 190
[6] Xu C, Zipfel W, Shear J B, Williams R M and Webb W W 1996 Proc. Natl. Acad. Sci. USA 93 10763
[7] Albota M A, Xu C and Webb W W 1998 Appl. Opt. 37 7352
[8] Akhmanov S A, Bunkin A F, Ivanov S G and Koroteev N I 1977 JETP Lett. 25 416
[9] Oudar J L, Smith R W and Shen Y R 1979 Appl. Phys. Lett. 34 758
[10] Cheng J X, Book L D and Xie X S 2001 Opt. Lett. 26 1341
[11] Roy S, Meyer T R and Gord J R 2005 Appl. Phys. Lett. 87 264103
[12] Lu Y G, Li Z J, Wu L Z, Wang P, Fu L M and Zhang J P 2013 Acta Phys. Chim. Sin. 29 1632 (in Chinese)
[13] Volkmer A, Book L D and Xie X S 2002 Appl. Phys. Lett. 80 1505
[14] He P, Fun R W, Xia Y Q, Yu X, Yao Y and Chen D Y 2011 Chin. Phys. Lett. 28 047804
[15] Hellwarth R 1977 Prog. Quantum Electron. 5 1
[16] Potma E O, Evans C L and Xie X S 2006 Opt. Lett. 31 241
[17] Evans C L, Potma E O and Xie X S 2004 Opt. Lett. 29 2923
[18] Jurna M, Korterik J, Otto C, Herek J and Offerhaus H 2009 Phys. Rev. Lett. 103 043905
[19] Berto P, Gachet D, Bon P, Monneret S and Rigneault H 2012 Phys. Rev. Lett. 109 093902
[20] Shi K, Li H, Xu Q, Psaltis D and Liu Z 2010 Phys. Rev. Lett. 104 093902
[21] Xu Q, Shi K, Li H, Choi K, Horisaki R, Brady D, Psaltis D and Liu Z 2010 Opt. Express 18 8213
[22] Lv Y, Ji Z, Yang H, Shi K and Gong Q H 2015 Opt. Lett. 40 2095
[23] Nichelatti E and Pozzi G 1998 Appl. Opt. 37 9
Related articles from Frontiers Journals
[1] Rui-Kai Pan, Lei Tang, Keyu Xia, and Franco Nori. Dynamic Nonreciprocity with a Kerr Nonlinear Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 074209
[2] Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia, Chun-Jie Yang, Wu-Ming Liu, and Zun-Lue Zhu. Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 074209
[3] Qifang Peng, Zhaoyang Peng, Yue Lang, Yalei Zhu, Dongwen Zhang, Zhihui Lü, and Zengxiu Zhao. Decoherence Effects of Terahertz Generation in Solids under Two-Color Femtosecond Laser Fields[J]. Chin. Phys. Lett., 2022, 39(5): 074209
[4] Hui Li, Haigang Liu, Yangfeifei Yang, Ruifeng Lu, and Xianfeng Chen. Nonlinear Generation of Perfect Vector Beams in Ultraviolet Wavebands[J]. Chin. Phys. Lett., 2022, 39(3): 074209
[5] Hai-Zhong Wu, Quan Guo, Yan-Yun Tu, Zhi-Hui Lyu, Xiao-Wei Wang, Yong-Qiang Li, Zhao-Yan Zhou, Dong-Wen Zhang, Zeng-Xiu Zhao, and Jian-Min Yuan. Polarity Reversal of Terahertz Electric Field from Heavily p-Doped Silicon Surfaces[J]. Chin. Phys. Lett., 2021, 38(7): 074209
[6] Xian-Zhi Wang, Zhao-Hua Wang, Yuan-Yuan Wang, Xu Zhang, Jia-Jun Song, and Zhi-Yi Wei. A Self-Diffraction Temporal Filter for Contrast Enhancement in Femtosecond Ultra-High Intensity Laser[J]. Chin. Phys. Lett., 2021, 38(7): 074209
[7] Jian-Hui Ma, Hui-Qin Hu, Yu Chen, Guang-Jian Xu, Hai-Feng Pan, E Wu. High-Efficiency Broadband Near-Infrared Single-Photon Frequency Upconversion and Detection[J]. Chin. Phys. Lett., 2020, 37(3): 074209
[8] Li-Jiao He, Ke Liu, Nan Zong, Zhao Liu, Zhi-Min Wang, Yong Bo, Xiao-Jun Wang, Qin-Jun Peng, Da-Fu Cui, Zu-Yan Xu. A High Conversion Efficiency Q-Switched Intracavity Nd:YVO$_{4}$/KTA Optical Parametric Oscillator under Direct Diode Pumping at 880nm[J]. Chin. Phys. Lett., 2019, 36(4): 074209
[9] Rui Wang, Yan-Ling Wu, B. H. Yu, Li-Li Hu, C. Z. Gu, J. J. Li, Jimin Zhao. Absorptive Fabry–Pérot Interference in a Metallic Nanostructure[J]. Chin. Phys. Lett., 2019, 36(2): 074209
[10] Xing Wei, ZhenDa Xie, Yan-Xiao Gong, Xinjie Lv, Gang Zhao, ShiNing Zhu. Localization and Steering of Light in One-Dimensional Parity-Time Symmetric Photonic Lattices[J]. Chin. Phys. Lett., 2019, 36(1): 074209
[11] Wei Wang, Fan-Chao Meng, Yuan Qing, Shi Qiu, Ting-Ting Dong, Wei-Zhen Zhu, Yu-Ting Zuo, Ying Han, Chao Wang, Yue-Feng Qi, Lan-Tian Hou. Tunable Supercontinuum Generated in a Yb$^{3+}$-Doped Microstructure Fiber Pumped by Ti:Sapphire Femtosecond Laser[J]. Chin. Phys. Lett., 2018, 35(10): 074209
[12] Kang-Bo Tan, Hong-Min Lu, Qiao Guan, Guang-Shuo Zhang, Chong-Chong Chen. Variational Analysis of High-Frequency Effect on Moving Electromagnetic Interface[J]. Chin. Phys. Lett., 2018, 35(7): 074209
[13] J. Shiri, F. Shahi, M. R. Mehmannavaz, L. Shahrassai. Phase Control of Transient Optical Properties of Double Coupled Quantum-Dot Nanostructure via Gaussian Laser Beams[J]. Chin. Phys. Lett., 2018, 35(2): 074209
[14] Wen-Hao Xu, Zhan-Ying Yang, Chong Liu, Wen-Li Yang. Localized Optical Waves in Defocusing Regime of Negative-Index Materials[J]. Chin. Phys. Lett., 2017, 34(10): 074209
[15] Li-Bo Fang, Wei Pan, Si-Hua Zhong, Wen-Zhong Shen. Nonresonant and Resonant Nonlinear Absorption of CdSe-Based Nanoplatelets[J]. Chin. Phys. Lett., 2017, 34(9): 074209
Viewed
Full text


Abstract