Chin. Phys. Lett.  2015, Vol. 32 Issue (07): 074204    DOI: 10.1088/0256-307X/32/7/074204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Design of an Electrically Written and Optically Read Non-volatile Memory Device Employing BiFeO3/Au Heterostructures with Strong Absorption Resonance
XIAO Peng-Bo, ZHANG Wei, QU Tian-Liang**, HUANG Yun, HU Shao-Min
College of Opto-electric Science and Engineering, National University of Defence Technology, Changsha 410073
Cite this article:   
XIAO Peng-Bo, ZHANG Wei, QU Tian-Liang et al  2015 Chin. Phys. Lett. 32 074204
Download: PDF(1137KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Exploiting new concepts for dense, fast, and nonvolatile random access memory with reduced energy consumption is a significant issue for information technology. Here we design an 'electrically written and optically read' information storage device employing BiFeO3/Au heterostructures with strong absorption resonance. The electro-optic effect is the basis for the device design, which arises from the strong absorption resonance in BiFeO3/Au heterostructures and the electrically tunable significant birefringence of the BiFeO3 film. We first construct a simulation calculation of the BiFeO3/Au structure spectrum and identify absorption resonance and electro-optical modulation characteristics. Following a micro scale partition, the surface reflected light intensity of different polarization units is calculated. The results depend on electric polarization states of the BiFeO3 film, thus BiFeO3/Au heterostructures can essentially be designed as a type of electrically written and optically read information storage device by utilizing the scanning near-field optical microscopy technology based on the conductive silicon cantilever tip with nanofabricated aperture. This work will shed light on information storage technology.
Received: 03 April 2015      Published: 30 July 2015
PACS:  42.79.Vb (Optical storage systems, optical disks)  
  78.20.Jq (Electro-optical effects)  
  77.84.Bw (Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/7/074204       OR      https://cpl.iphy.ac.cn/Y2015/V32/I07/074204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIAO Peng-Bo
ZHANG Wei
QU Tian-Liang
HUANG Yun
HU Shao-Min
[1] Sebastian A et al 2008 IEEE Control Syst. 28 26
[2] Hamann H F et al 2006 Nat. Mater. 5 383
[3] Ahn C H et al 1997 Science 276 1100
[4] Cho Y et al 2005 Appl. Phys. Lett. 87 232907
[5] Ahn C H et al 2004 Science 303 488
[6] Scott J F 2000 Ferroelectric Memories (Berlin: Springer)
[7] Guo R et al 2013 Nat. Commun. 4 1990
[8] Leiprecht P et al 2011 Appl. Phys. Lett. 98 013103
[9] Wang J et al 2003 Science 299 1719
[10] Choi S G et al 2011 Phys. Rev. B 83 100101(R)
[11] Chu S H et al 2012 Laser Photon. Rev. 6 684
[12] Xu X et al 2011 Nano Lett. 11 1265
[13] Kehr S C et al 2011 Nat. Commun. 2 249
[14] Kats M A et al 2012 Nat. Mater. 12 20
[15] Kats M A et al 2012 Appl. Phys. Lett. 101 221101
[16] Brooker G 2003 Modern Classical Optics (Oxford: Oxford University Press)
[17] Zhao T et al 2006 Nat. Mater. 5 823
[18] Teolis B D et al 2007 Icarus 190 274
[19] Alvarez J et al 2011 Nanoscale Res. Lett. 6 1
[20] Wu Y L et al 2007 IEEE Trans. Device Mater. Reliab. 2 351
[21] Engquist B and Majda A 1977 Math. Comput. 31 629
[22] Mur G 1981 IEEE Trans. Electromagnetic Compatibility EMC-23 377
[23] Sacks Z S et al 1995 IEEE Trans. Antennas & Propag. 43 1460
[24] Gedney S D 1996 IEEE Trans. Antennas Propag. 44 1630
[25] Villarrubia J S et al 2003 Proc. SPIE 3005 138
[26] Gruverman A et al 1995 J. Vac. Sci. Technol. B Microelectronics Nanometer Struct. 13 1095
[27] Zavaliche F et al 2005 Appl. Phys. Lett. 87 252902
[28] Kusko C et al 2009 IEEE Int. Semiconductor Conf. 1 197
Related articles from Frontiers Journals
[1] FENG Zhen, SHENG Xin-Zhi, WU Chong-Qing, LI Zheng-Yong, and MAO Ya-Ya. All-Optical Time Slot Interchange Using a Cascaded Optical Buffer[J]. Chin. Phys. Lett., 2012, 29(8): 074204
[2] JIANG Lai-Xin, WU Yi-Qun, WANG Yang, WEI Jing-Song, GAN Fu-Xi. Low-Power Super-resolution Readout with Antimony Bismuth Alloy Film as Mask layer[J]. Chin. Phys. Lett., 2009, 26(2): 074204
[3] SUN Hua-Jun, HOU Li-Song, WU Yi-Qun, TANG Xiao-Dong. Reversible Resistance Switching Effect in Amorphous Ge1Sb4Te7 Thin Films without Phase Transformation[J]. Chin. Phys. Lett., 2009, 26(2): 074204
[4] SUN Hua-Jun, HOU Li-Song, WU Yi-Qun, ZHAI Feng-Xiao. A Feasible Approach to Optical--Electrical Hybrid Data Storage Using Phase Change Material[J]. Chin. Phys. Lett., 2008, 25(8): 074204
[5] ZHU Yi-Chao, ZHANG Jia-Sen, GONG Qi-Huang. Triple Encrypted Holographic Storage and Digital Holographic System[J]. Chin. Phys. Lett., 2008, 25(6): 074204
[6] SONG Jie, XIA Si-Fei, XU Duan-Yi. Approximated Vector Diffraction Theory for Readout Signal of Multi-Level Run-Length-Limited Discs[J]. Chin. Phys. Lett., 2008, 25(6): 074204
[7] TANG Yi, PEI Jing, PAN Long-Fa, NI Yi, HU Hua, ZHANG Bu-Qing. Experiments of Multi-Level Read-Only Recording Using Readout Signal Wave-Shape Modulation[J]. Chin. Phys. Lett., 2008, 25(5): 074204
[8] XU Ji-Ying, WANG Jia, TIAN Qian, WANG Bo-Xiong. Numerical Analysis of Nano-Aperture Light Source for High-Density Optical Data Storage[J]. Chin. Phys. Lett., 2007, 24(7): 074204
[9] SHI Ming, ZHAO Sheng-Min, YI Jia-Xiang, ZHAO Fu-Qun, NIU Li-Hong, LI Zhong-Yu, ZHANG Fu-Shi. Super-Resolution Recording by an Organic Photochromic Mask Layer[J]. Chin. Phys. Lett., 2007, 24(4): 074204
[10] SONG Jie, PEI Jing, XU Duan-Yi, XIONG Jian-Ping, CHEN Ken, PAN Long-Fa. Pit Depth and Width Modulation Multilevel Run-Length Limited Read-Only Optical Storage[J]. Chin. Phys. Lett., 2006, 23(6): 074204
[11] ZHANG Feng, WANG Yang, XU Wen-Dong, SHI Hong-Ren, WEI Jing-Song, GAN Fu-Xi. High-Density Read-Only Memory Disc with Ag11In12Sb51Te26 Super-Resolution Mask Layer[J]. Chin. Phys. Lett., 2004, 21(10): 074204
[12] JIANG Zhong-Wei, ZHOU Yong-Jun, YUAN Da-Jun, HUANG Wen-Hao, XIA An-Dong,. A Two-Photon Femtosecond Laser System for Three-Dimensional Microfabrication and Data Storage[J]. Chin. Phys. Lett., 2003, 20(12): 074204
[13] PENG Jin, HU Bing, HU Cheng-Yong, BIAN Song-Bao, YANG Fu-Hua, ZHENG Hou-Zhi. Storage of Photoexcited Electron-Hole Pairs in an AlAs/GaAs Heterosturcture Created by Electron Transfer in Real and k Spaces[J]. Chin. Phys. Lett., 2002, 19(10): 074204
[14] LI Cheng-De, WANG Dan-Ling, LUO Le, YANG Hong, XIA Zong-Ju, GONG Qi-Huang. Feasibility of Femtosecond Laser Writing Multi-Layered Bit Planes in Fused Silica for Three-Dimensional Optical Data Storage[J]. Chin. Phys. Lett., 2001, 18(4): 074204
[15] TAO Shi-Quan, JIANG Zhu-Qing, YUAN Quan, LIU Guo-Qing, XU Min. Multi-track Storage of 10000 Holograms in a Disk-Type Photorefractive Crystal[J]. Chin. Phys. Lett., 2000, 17(9): 074204
Viewed
Full text


Abstract