Chin. Phys. Lett.  2015, Vol. 32 Issue (07): 070701    DOI: 10.1088/0256-307X/32/7/070701
GENERAL |
A High-Sensitivity Refractive-Index Sensor Based on Plasmonic Waveguides Asymmetrically Coupled with a Nanodisk Resonator
XIAO Li-Ping, WANG Fa-Qiang**, LIANG Rui-Sheng, ZOU Shi-Wei, HU Miao
Laboratory of Nanophotonic Functional Materials and Devices, and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006
Cite this article:   
XIAO Li-Ping, WANG Fa-Qiang, LIANG Rui-Sheng et al  2015 Chin. Phys. Lett. 32 070701
Download: PDF(723KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A high-sensitivity plasmonic refractive-index sensor based on the asymmetrical coupling of two metal-insulator-metal waveguides with a nanodisk resonator is proposed and simulated in the finite-difference time domain. Both analytic and simulated results show that the resonance wavelengths of the sensor have an approximate linear relationship with the refractive index of the materials which are filled into the slit waveguides and the disk-shaped resonator. The working mechanism of this sensor is exactly due to the linear relationship, based on which the refractive index of the materials unknown can be obtained from the detection of the resonance wavelength. The measurement sensitivity can reach as high as 6.45×10?7, which is nearly five times higher than the results reported in the recent literature [Opt. Commun. 300 (2013) 265]. With an optimum design, the sensing value can be further improved, and it can be widely applied into the biological sensing. The sensor working for temperature sensing is also analyzed.
Received: 10 March 2015      Published: 30 July 2015
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  42.81.Qb (Fiber waveguides, couplers, and arrays)  
  52.38.-r (Laser-plasma interactions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/7/070701       OR      https://cpl.iphy.ac.cn/Y2015/V32/I07/070701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIAO Li-Ping
WANG Fa-Qiang
LIANG Rui-Sheng
ZOU Shi-Wei
HU Miao
[1] Barnes W L et al 2003 Nature 424 824
[2] Liu L et al 2005 Opt. Express 13 6645
[3] Bozhevolnyi S I et al 2006 Nature 440 508
[4] Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photon. 4 83
[5] Zand I et al 2013 Opt. Express 21 79
[6] Veronis G and Fan S 2005 Appl. Phys. Lett. 87 131102
[7] Guo Y H et al 2013 Plasmonics 8 167
[8] Bochenkov V E et al 2013 Opt. Express 21 14763
[9] Dost J and Homola J 2008 Sens. Actuators B 129 303
[10] Verma R et al 2012 IEEE Sens. J. 12 3460
[11] Larsson E M et al 2007 Nano Lett. 7 1256
[12] Lesuffleur A et al 2007 Appl. Phys. Lett. 90 243110
[13] Anker J N et al 2008 Nat. Mater. 7 442
[14] Du Y C et al 2013 Opt. Commun. 298 232
[15] Raza S et al 2013 Plasmonics 8 193
[16] Zhang J et al 2013 Biosens. Bioelectron. 45 230
[17] Dolatabady A et al 2013 Opt. Commun. 300 265
[18] Wu T S et al 2014 Opt. Express 22 7669
[19] Zhu J H et al 2012 Opt. Commun. 285 3242
[20] Wu T S et al 2014 Opt. Commun. 323 44
[21] Liedberg B et al 1991 Sens. Actuators B 5 79
[22] Zong X B et al 2013 Chin. Phys. Lett. 30 040702
[23] Han Y et al 2014 Chin. Phys. B 23 104219
[24] Zeng C et al 2014 Appl. Phys. Lett. 105 121103
[25] Zeng C et al 2015 Opt. Express 23 545
[26] Lu H et al 2011 Opt. Commun. 284 2613
[27] Lee T W and Gray S K 2005 Opt. Express 13 9652
[28] Jin X P et al 2010 IEEE Trans. Nanotechnol. 9 134
[29] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[30] Li Q et al 2010 Opt. Express 18 8367
[31] Zhang H and Wan B H 1998 Phys. Experiment College 11 1
Related articles from Frontiers Journals
[1] Shaochun Lin, Tian Tian, Peiran Yin, Pu Huang, Liang Zhang, and Jiangfeng Du. Micro-Gas Flow Induced Stochastic Resonance of a Nonlinear Nanomechanical Resonator[J]. Chin. Phys. Lett., 2021, 38(2): 070701
[2] Zhi Meng, Lei Shen, Zongwei Ma, Muhammad Adnan Aslam, Liqiang Xu, Xueli Xu, Wang Zhu, Long Cheng, Yuecheng Bian, Li Pi, Chun Zhou, Zhigao Sheng. Transient Photoconductivity in LaRhO$_{3}$ Thin Film[J]. Chin. Phys. Lett., 2019, 36(11): 070701
[3] Li-Jun Yang, Yan Li. Pascal Realization by Comb-Spectral-Interferometry Based Refractometer[J]. Chin. Phys. Lett., 2018, 35(10): 070701
[4] Xiang-Mi Zhan, Quan Wang, Kun Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Fast Electrical Detection of Carcinoembryonic Antigen Based on AlGaN/GaN High Electron Mobility Transistor Aptasensor[J]. Chin. Phys. Lett., 2017, 34(9): 070701
[5] Xiang-Mi Zhan, Mei-Lan Hao, Quan Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Highly Sensitive Detection of Deoxyribonucleic Acid Hybridization Using Au-Gated AlInN/GaN High Electron Mobility Transistor-Based Sensors[J]. Chin. Phys. Lett., 2017, 34(4): 070701
[6] Yu-Long Cao, Fei Yang, Dan Xu, Qing Ye, Hai-Wen Cai, Zu-Jie Fang. Phase-Sensitive Optical Time-Domain Reflectometer Based on a 120$^{\circ}$-Phase-Difference Michelson Interferometer[J]. Chin. Phys. Lett., 2016, 33(05): 070701
[7] CHEN Di, ZHAO Bai-Qin, ZHANG Xin. High Signal-to-Noise Ratio Hall Devices with a 2D Structure of Dual δ-Doped GaAs/AlGaAs for Low Field Magnetometry[J]. Chin. Phys. Lett., 2015, 32(12): 070701
[8] ZHANG Yong, XIE Long-Zhen, LI Hai-Rong, WANG Peng, LIU Su, PENG Ying-Quan, ZHANG Miao. Facile Synthesis of Rose-Like NiO Nanoparticles and Their Ethanol Gas-Sensing Property[J]. Chin. Phys. Lett., 2015, 32(09): 070701
[9] M. Chitra, K. Uthayarani, N. Rajasekaran, N. Neelakandeswari, E. K. Girija, D. Pathinettam Padiyan. Rice Husk Templated Mesoporous ZnO Nanostructures for Ethanol Sensing at Room Temperature[J]. Chin. Phys. Lett., 2015, 32(07): 070701
[10] ZHANG Yun-Shan, QIAO Xue-Guang, SHAO Min, LIU Qin-Peng. In-Fiber Mach–Zehnder Interferometer Based on Waist-Enlarged Taper and Core-Mismatching for Strain Sensing[J]. Chin. Phys. Lett., 2015, 32(06): 070701
[11] YUAN Heng, ZHANG Ji-Xing, ZHANG Chen, ZHANG Ning, XU Li-Xia, DING Ming, Patrick J. Clarke. Low Gate Voltage Operated Multi-emitter-dot H+ Ion-Sensitive Gated Lateral Bipolar Junction Transistor[J]. Chin. Phys. Lett., 2015, 32(02): 070701
[12] FENG Zhao-Bin, LIU Duo. Enhanced Second-Order Resonance Actuation and Frequency Response Modulation of Microcantilever by Dual Coplanar Counter Electrodes[J]. Chin. Phys. Lett., 2013, 30(10): 070701
[13] HUANG Wan-Xia . Fano-Resonance of a Planar Metamaterial[J]. Chin. Phys. Lett., 2013, 30(7): 070701
[14] CHEN Zong-Qiang, QI Ji-Wei, CHEN Jing, LI Yu-Dong, HAO Zhi-Qiang, LU Wen-Qiang, XU Jing-Jun, SUN Qian . Fano Resonance Based on Multimode Interference in Symmetric Plasmonic Structures and its Applications in Plasmonic Nanosensors[J]. Chin. Phys. Lett., 2013, 30(5): 070701
[15] XU Bin-Zong, LIU Jie-Tao, HU Hai-Feng, WANG Li-Na, WEI Xin, SONG Guo-Feng. A High Sensitivity Index Sensor Based on Magnetic Plasmon Resonance in Metallic Grating with Very Narrow Slits[J]. Chin. Phys. Lett., 2013, 30(4): 070701
Viewed
Full text


Abstract