GENERAL |
|
|
|
|
Fidelity Tradeoff in Estimation of Partial Entanglement State with Local Operation and Classic Communication |
ZHANG Sheng-Li, WANG-Kun**, GUO Jian-Sheng, SHI Jian-Hong |
The PLA Information Engineering University, Zhengzhou 450004 |
|
Cite this article: |
ZHANG Sheng-Li, WANG-Kun, GUO Jian-Sheng et al 2015 Chin. Phys. Lett. 32 070302 |
|
|
Abstract In quantum mechanics, there is no measurement process that could gain some information of an unknown quantum state without causing any disturbance. A tradeoff bound between the amount of information gain and the concomitant disturbance ? in the measurement process of a bipartite entangled state is actually ingrained. Such a bound is fundamental and closely connected with the entangled degree b. In this work, the bound for estimation of a partial entangled state with a local strategy is investigated. It is shown that, with local operation with classical communication, a monotonic change in the ?– picture will be spotted. This is due to the fact that the partial entanglement gradually becomes two individual qubits and, consequently, the optimal operation boils down to local operations. A quantum circuit which achieves the optimal tradeoff is also obtained.
|
|
Received: 26 February 2015
Published: 30 July 2015
|
|
PACS: |
03.67.-a
|
(Quantum information)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
|
|
|
[1] Fuchs C A and Peres A 1996 Phys. Rev. A 53 2038
[2] Fuchs C A and Jacobs K 2001 Phys. Rev. A 63 062305
[3] Banaszek K 2001 Phys. Rev. Lett. 86 1366
[4] Banaszek K and Devetak I 2001 Phys. Rev. A 64 052307
[5] Mišta L and Fiurášek J 2006 Phys. Rev. A 74 022316
[6] Mišta L, Fiurášek J and Filip R 2005 Phys. Rev. A 72 012311
[7] Genoni M G and Paris M G A 2006 Phys. Rev. A 74 012301
[8] Mišta L 2006 Phys. Rev. A 73 032335
[9] Buscemi F and Sacchi M F 2006 Phys. Rev. A 74 052320
[10] Sacchi M F 2007 Phys. Rev. A 75 012306
[11] Sciarrino F, Ricci M, De Martini F, Filip R and Mišta L 2006 Phys. Rev. Lett. 96 020408
[12] Filip R, Mišta L, De Martini F, Ricci M and Sciarrino F 2006 Phys. Rev. A 74 052312
[13] Andersen U L, Sabuncu M, Filip R and Leuchs G 2006 Phys. Rev. Lett. 96 020409
[14] Sacchi M F 2006 Phys. Rev. Lett. 96 220502
[15] Barnum H 2002 arXiv:0205155[quant-ph]
[16] D'Ariano G M 2003 Fortschr. Phys. 51 318
[17] Ozawa M 2004 Ann. Phys. 311 350
[18] Maccone L 2006 Phys. Rev. A 73 042307
[19] Peres A and Scudo P F 2002 Quantum Theory: Reconsideration of Foundations (Sweden: Vaxjo University Press)
[20] Bartlett S, Rudolph T and Spekkens R 2007 Rev. Mod. Phys. 79 555
[21] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[22] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722
[23] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[24] Cohen S M 2007 Phys. Rev. A 75 052313
[25] Zhelobenko D P 1973 Compact Lie Groups and Their Representations (Providence: American Mathematical Society)
[26] Kraus K 1983 States, Effects and Operations (Berlin: Springer-Verlag)
[27] Holevo A 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North Holland)
[28] Demkowicz-Dobrzański R, Lewenstein M, Sen(De) A, Sen U and Bruß D 2006 Phys. Rev. A 73 032313
[29] Mišta L and Filip R 2005 Phys. Rev. A 72 034307
[30] Genoni M G and Paris M G A 2005 Phys. Rev. A 71 052307 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|