Chin. Phys. Lett.  2015, Vol. 32 Issue (07): 070302    DOI: 10.1088/0256-307X/32/7/070302
GENERAL |
Fidelity Tradeoff in Estimation of Partial Entanglement State with Local Operation and Classic Communication
ZHANG Sheng-Li, WANG-Kun**, GUO Jian-Sheng, SHI Jian-Hong
The PLA Information Engineering University, Zhengzhou 450004
Cite this article:   
ZHANG Sheng-Li, WANG-Kun, GUO Jian-Sheng et al  2015 Chin. Phys. Lett. 32 070302
Download: PDF(1720KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In quantum mechanics, there is no measurement process that could gain some information of an unknown quantum state without causing any disturbance. A tradeoff bound between the amount of information gain �� and the concomitant disturbance ? in the measurement process of a bipartite entangled state is actually ingrained. Such a bound is fundamental and closely connected with the entangled degree b. In this work, the bound for estimation of a partial entangled state with a local strategy is investigated. It is shown that, with local operation with classical communication, a monotonic change in the ?–�� picture will be spotted. This is due to the fact that the partial entanglement gradually becomes two individual qubits and, consequently, the optimal operation boils down to local operations. A quantum circuit which achieves the optimal tradeoff is also obtained.

Received: 26 February 2015      Published: 30 July 2015
PACS:  03.67.-a (Quantum information)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Ud (Entanglement and quantum nonlocality)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/7/070302       OR      https://cpl.iphy.ac.cn/Y2015/V32/I07/070302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Sheng-Li
WANG-Kun
GUO Jian-Sheng
SHI Jian-Hong

[1] Fuchs C A and Peres A 1996 Phys. Rev. A 53 2038
[2] Fuchs C A and Jacobs K 2001 Phys. Rev. A 63 062305
[3] Banaszek K 2001 Phys. Rev. Lett. 86 1366
[4] Banaszek K and Devetak I 2001 Phys. Rev. A 64 052307
[5] Mišta L and Fiurášek J 2006 Phys. Rev. A 74 022316
[6] Mišta L, Fiurášek J and Filip R 2005 Phys. Rev. A 72 012311
[7] Genoni M G and Paris M G A 2006 Phys. Rev. A 74 012301
[8] Mišta L 2006 Phys. Rev. A 73 032335
[9] Buscemi F and Sacchi M F 2006 Phys. Rev. A 74 052320
[10] Sacchi M F 2007 Phys. Rev. A 75 012306
[11] Sciarrino F, Ricci M, De Martini F, Filip R and Mišta L 2006 Phys. Rev. Lett. 96 020408
[12] Filip R, Mišta L, De Martini F, Ricci M and Sciarrino F 2006 Phys. Rev. A 74 052312
[13] Andersen U L, Sabuncu M, Filip R and Leuchs G 2006 Phys. Rev. Lett. 96 020409
[14] Sacchi M F 2006 Phys. Rev. Lett. 96 220502
[15] Barnum H 2002 arXiv:0205155[quant-ph]
[16] D'Ariano G M 2003 Fortschr. Phys. 51 318
[17] Ozawa M 2004 Ann. Phys. 311 350
[18] Maccone L 2006 Phys. Rev. A 73 042307
[19] Peres A and Scudo P F 2002 Quantum Theory: Reconsideration of Foundations (Sweden: Vaxjo University Press)
[20] Bartlett S, Rudolph T and Spekkens R 2007 Rev. Mod. Phys. 79 555
[21] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[22] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722
[23] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[24] Cohen S M 2007 Phys. Rev. A 75 052313
[25] Zhelobenko D P 1973 Compact Lie Groups and Their Representations (Providence: American Mathematical Society)
[26] Kraus K 1983 States, Effects and Operations (Berlin: Springer-Verlag)
[27] Holevo A 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North Holland)
[28] Demkowicz-Dobrzański R, Lewenstein M, Sen(De) A, Sen U and Bruß D 2006 Phys. Rev. A 73 032313
[29] Mišta L and Filip R 2005 Phys. Rev. A 72 034307
[30] Genoni M G and Paris M G A 2005 Phys. Rev. A 71 052307

Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 070302
[2] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 070302
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 070302
[4] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 070302
[5] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 070302
[6] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 070302
[7] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 070302
[8] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 070302
[9] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 070302
[10] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 070302
[11] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 070302
[12] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 070302
[13] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 070302
[14] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 070302
[15] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 070302
Viewed
Full text


Abstract