Chin. Phys. Lett.  2015, Vol. 32 Issue (07): 070201    DOI: 10.1088/0256-307X/32/7/070201
GENERAL |
Groups Analysis and Localized Solutions of the (2+1)-Dimensional Ito Equation
HU Xiao-Rui1**, CHEN Jun-Chao2, CHEN Yong2
1Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023
2Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062
Cite this article:   
HU Xiao-Rui, CHEN Jun-Chao, CHEN Yong 2015 Chin. Phys. Lett. 32 070201
Download: PDF(840KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By means of the modified Clarkson and Kruskal (CK) direct method and the variable separation approach, we investigate the (2+1)-dimensional Ito equation which was constructed by Ito in 1980. The full symmetry group with the Kac–Moody–Virasoro algebra structure and the variable separation solutions are obtained. By selecting appropriate arbitrary functions, some special soliton excitations are shown graphically. The results presented here would be beneficial for understanding the (2+1)-dimensional Ito equation better.
Received: 09 February 2015      Published: 30 July 2015
PACS:  02.20.-a (Group theory)  
  04.20.Jb (Exact solutions)  
  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/7/070201       OR      https://cpl.iphy.ac.cn/Y2015/V32/I07/070201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HU Xiao-Rui
CHEN Jun-Chao
CHEN Yong
[1] Ablowitz M J and Clarkson P A 1991 Soliton, Nonlinear Evolution Equations and Inverse Scattering (New York: Cambridge University Press)
[2] Matveev V B and Salle M A 1991 Darboux Transformation and Solitons (Berlin: Springer)
[3] Miurs M R 1978 B?cklund Transformation (Berlin: Springer)
[4] Hirota R 2004 The Direct Method in Soliton Theory, (Cambridge: Cambridge University Press)
[5] Malfliet W and Hereman W 1996 Phys. Scr. 54 563
[6] Bluman G W and Kumei S 1989 Symmetries and Differential Equations (Berlin: Springer-Verlag)
[7] Belokolos E, Bobenko A, Enol'skij V, Its A and Matveev V 1994 Algebro-Geometrical Approach to Nonlinear Integrable Equations (Berlin: Springer-Verlag)
[8] Tang X Y, Lou S Y and Zhang Y 2002 Phys. Rev. E 66 046601
[9] Ito M 1980 J. Phys. Soc. Jpn. 49 771
[10] Jimbo M and Miwa T 1983 Publ. RIMS Kyoto Univ. 19 943
[11] Drinfeld V G and Sokolov V V 1985 J. Sov. Math. 30 1975
[12] Gurses M, Karasu A and Sokolov S S 1999 J. Math. Phys. 40 6473
[13] Liu Q P 2000 Phys. Lett. A 277 31
[14] Li D L and Zhao J X 2009 Appl. Math. Comput. 215 1968
[15] Wazwaz A M 2008 Appl. Math. Comput. 202 840
[16] Zhao Z H, Dai Z D and Wang C J 2010 Appl. Math. Comput. 217 2295
[17] Wang Y H 2014 Math. Meth. Appl. Sci.
[18] Clarkson P A and Kruskal M 1989 J. Math. Phys. 30 2201
[19] Lou S Y and Ma H C 2005 J. Phys. A: Math. Gen. 38 L129
Related articles from Frontiers Journals
[1] XIN Xiang-Peng, CHEN Yong. A Method to Construct the Nonlocal Symmetries of Nonlinear Evolution Equations[J]. Chin. Phys. Lett., 2013, 30(10): 070201
[2] Joydeep Choudhury, Nirmal Kumar Sarkar, Ramendu Bhattacharjee. Infrared Spectra of PH3 and NF3: An Algebraic Approach[J]. Chin. Phys. Lett., 2013, 30(7): 070201
[3] YAO Ruo-Xia, LOU Sen-Yue,. A Maple Package to Compute Lie Symmetry Groups and Symmetry Reductions of (1+1)-Dimensional Nonlinear Systems[J]. Chin. Phys. Lett., 2008, 25(6): 070201
[4] B. A. Tay, Hishamuddin Zainuddin. Orbit Classification of Qutrit via the Gram Matrix[J]. Chin. Phys. Lett., 2008, 25(6): 070201
[5] WANG Li-Zhen, GOU Ming, QU Chang-Zheng,. Conditional Lie Backlund Symmetries of Hamilton--Jacobi Equations[J]. Chin. Phys. Lett., 2007, 24(12): 070201
[6] M. T. Chefrour. Algebraic Treatment of the MIC-Kepler System in Spherical Coordinates[J]. Chin. Phys. Lett., 2007, 24(8): 070201
[7] S. A. Alavi. General Noncommuting Curvilinear Coordinates and Fluid Mechanics[J]. Chin. Phys. Lett., 2006, 23(10): 070201
[8] TIAN Li-Jun, YANG Guo-Hong, ZHANG Hong-Biao, HOU Jing-Min. Reduced Properties and Applications of Y(sl(2)) Algebra for a Two-Spin System[J]. Chin. Phys. Lett., 2006, 23(7): 070201
[9] TIAN Li-Jun, JIN Shuo, ZHANG Hong-Biao, XUE Kang. A Realization and Truncation of Yangian Algebra in the Generalized Hydrogen Atom with a U(1) Monopole[J]. Chin. Phys. Lett., 2004, 21(5): 070201
[10] XU Jing-Bo, ZOU Xu-Bo. Dynamical Algebraic Approach to the Modified Jaynes-Cummings Model[J]. Chin. Phys. Lett., 2001, 18(1): 070201
[11] BAO Cheng-Guang, SHI Ting-Yun. Qualitative Analysis of Low-Lying Resonances of the Dipositronium Emerging from Ps-Ps and Ps-Ps* Collisions[J]. Chin. Phys. Lett., 2000, 17(5): 070201
[12] BAO Cheng-Guang. A Qualitative Analysis of Channel Wave Functions and Widths of the Low-lying States of 6Li[J]. Chin. Phys. Lett., 2000, 17(1): 070201
[13] BAO Cheng-guang, SHI Ting-yun. Existence of Two Higher L=0 Bound States of the Dipositroniums[J]. Chin. Phys. Lett., 1999, 16(4): 070201
[14] SU Ka-lin. The Most General Corrdinate Transformation Between the Hydrogen Atom and Harmonic Oscillator in Arbitrary Dimensions[J]. Chin. Phys. Lett., 1997, 14(10): 070201
[15] PAN Feng, DAI Lian-rong. General Deformed Oscillators[J]. Chin. Phys. Lett., 1997, 14(1): 070201
Viewed
Full text


Abstract