Chin. Phys. Lett.  2015, Vol. 32 Issue (5): 058104    DOI: 10.1088/0256-307X/32/5/058104
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Left-Handedness with Three Zero-Absorption Windows Tuned by the Incoherent Pumping Field and Inter-Dot Tunnelings in a GaAs/AlGaAs Triple Quantum Dots System
ZHAO Shun-Cai1**, ZHANG Shuang-Ying1, WU Qi-Xuan2, JIA Jing1
1Physics department, Kunming University of Science and Technology, Kunming 650500
2College of English, Kunming University of Science and Technology, Kunming 650500
Cite this article:   
ZHAO Shun-Cai, ZHANG Shuang-Ying, WU Qi-Xuan et al  2015 Chin. Phys. Lett. 32 058104
Download: PDF(542KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Left-handedness with three zero-absorption windows is achieved in a triple-quantum-dot system. With the typical parameters of a GaAs/AlGaAs heterostructure, the simultaneous negative relative electric permittivity and magnetic permeability are obtained by the adjustable incoherent pumping field and two inter-dot tunnelings. Furthermore, three zero-absorption windows in the left-handedness frequency bands are observed. The left-handedness with zero-absorption in the solid state heterostructure may solve the challenges not only in the left-handed materials achieved by the photonic resonant scheme but also in the application of negative refractive materials with a large amount of absorption.

Received: 13 December 2014      Published: 01 June 2015
PACS:  81.07.Ta (Quantum dots)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  73.21.La (Quantum dots)  
  78.67.Hc (Quantum dots)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/5/058104       OR      https://cpl.iphy.ac.cn/Y2015/V32/I5/058104
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Shun-Cai
ZHANG Shuang-Ying
WU Qi-Xuan
JIA Jing

[1] Veselago V G 1968 Sov. Phys. Usp. 10 509
[2] Feise M W, Bevelacqua P J and Schneider J B 2002 Phys. Rev. B 66 035113
[3] Aydin K, Bulu I and Ozbay E 2007 Appl. Phys. Lett. 90 254102
[4] Pendry J B, Holden A J, Stewart W J and Youngs I 1996 Phys. Rev. Lett. 76 4773
[5] Pendry J B et al 1999 IEEE Trans. Microwave Theory Tech. 47 2075
[6] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[7] Cubukcu E, Aydin K, Ozbay E, Foteinopoulou S and Soukoulis C M 2003 Nature 423 604
[8] Oktel M Ö, Müstecapl?lu Ö E 2004 Phys. Rev. A 70 053806
[9] Pendry J B 2004 Science 306 1353
[10] Zhao S C, Liu Z D, Zheng J and Li G 2011 Chin. Phys. B 20 067802
       Zhao S C, Wu Q X and Gong A L 2013 Eur. Phys. J. D 67 28
[11] He S, Ruan Z C, Chen L and Shen J 2004 Phys. Rev. B 70 115113
[12] Shen J Q, Ruan Z C and He S 2004 Phys. Lett. A 330 487
[13] Zhang H J, Gong S Q, Niu Y P, Li R X and Xu Z Z 2006 Chin. Phys. Lett. 23 1769
       Thommen Q and Mandel P 2006 Phys. Rev. Lett. 96 053601
[14] Zhao S C, Liu Z D, Zheng J and Zhang Z Q 2012 Sci. Chin. Phys. Mech. Astron. 55 213
[15] Wu Y and Yang X X 2004 Phys. Rev. A 70 053818
       Wu Y and Yang X X 2005 Phys. Rev. A 71 053806
       Wu Y and Yang X X 2008 Physica E 41 70
[16] Waugh F R, Berry M J Mar D J, Westervelt R M, Campman K L and Gossard A C 1995 Phys. Rev. Lett. 75 705
[17] Greentree A D, Cole J H, Hamilton A R and Hollenberg L C L 2004 Phys. Rev. B 70 235317
[18] Kloeffel C and Loss D 2013 Annu. Rev. Condens. Matter Phys. 4 51
[19] Gaudreau L, Kam A, Granger G, Studenikin S A, Zawadzki P and Sachrajda A S 2009 Appl. Phys. Lett. 95 193101
[20] Gaudreau L, Granger G, Kam A, Aers G C, Studenikin S A, Sawadzki P, Pioro-Ladriére M, Wasilewski Z R and Sachrajda A S 2011 Nat. Phys. 8 54
[21] Villavicencio J, Maldonado I, Cota E and Platero G 2013 Phys. Rev. B 88 245305
[22] Medford J, Beil J, Taylor J M, Bartlett S D, Doherty A C, Rashba E I, Divincenzo D P, Lu H, Gossard A C and Marcus C M 2013 Nat. Nanotechnol. 8 654
[23] Busl M, Granger G, Gaudreau L, Sánchez R, Kam A, PioroLadriére M, Studenikin S A, Zawadzki P, Wasilewski Z R, Sachrajda A S and G Platero 2013 Nat. Nanotechnol. 8 261
[24] Hsieh C Y, Shim Y P and P Hawrylak 2012 Phys. Rev. B 85 085309
[25] You M H, Li Z G, Gao X, Liu X D, Deng Y, Liu G J, Li L, Wei Z P and Wang X H 2012 Laser Phys. 22 1673
[26] Birkedal D, Leosson K and Hvam J M 2001 Phys. Rev. Lett. 87 227401
[27] Bardeen J 1961 Appl. Phys. Lett. 6 57
[28] Reittu H J 1995 Am. J. Phys. 63 940
[29] Kocharovskaya O, Rostovtsev Y and Scully M O 2001 Phys. Rev. Lett. 86 628
[30] Zhao S C, Zhang S Y and Xu Y Y 2014 JETP Lett. 100 385
[31] Zhao C S and Liu D Z 2009 Int. J. Quantum Inf. 7 747
[32] Zhao C S, Liu D Z and Wu Q X 2010 Opt. Commun. 283 3301
[33] Waugh F R, Berry M J, Mar D J and Westervelt R M 1995 Phys. Rev. Lett. 75 705
[34] Yoo K H, Ram L R Mohan and Nelson D F 1989 Phys. Rev. B 39 12808
[35] Li F L, Fang A P and Wang M 2009 J. Phys. B: At. Mol. Opt. Phys. 42 195505
[36] Mehmannavaz M R and Sattari H 2014 Laser Phys. 24 125201
[37] Borges H S, Sanz L, Villas-Boas J M and Alcalde A M 2013 Appl. Phys. Lett. 103 222101

Related articles from Frontiers Journals
[1] Alireza Samavati, Zahra Samavati, A. F. Ismail, M. H. D. Othman, M. A. Rahman, A. K. Zulhairun. Efficient Visible Photoluminescence from Self-Assembled Ge QDs Embedded in Silica Matrix[J]. Chin. Phys. Lett., 2017, 34(6): 058104
[2] Yu-Long Chen, You Gao, Hong Chen, Hui Zhang, Miao He, Shu-Ti Li, Shu-Wen Zheng. Effect of In$_{x}$Ga$_{1-x}$As Interlayer on Surface Morphology and Optical Properties of GaSb/InGaAs Type-II Quantum Dots Grown on InP (100) Substrates[J]. Chin. Phys. Lett., 2016, 33(09): 058104
[3] Ting Wang, Hui-Yun Liu, Jian-Jun Zhang. Temperature-Dependent Photoluminescence Characteristics of InAs/GaAs Quantum Dots Directly Grown on Si Substrates[J]. Chin. Phys. Lett., 2016, 33(04): 058104
[4] ZHANG Ji-Cheng, LIU Yu-Wei, HUANG Cheng-Long, ZHANG Qiang-Qiang, YI Yong, ZENG Yong, ZHU Xiao-Li, FAN Quan-Ping, QIAN Feng, WEI Lai, WANG Hong-Bin, WU Wei-Dong, CAO Lei-Feng. Diffraction Properties for 1000 Line/mm Free-Standing Quantum-Dot-Array Diffraction Grating Fabricated by Focused Ion Beam[J]. Chin. Phys. Lett., 2014, 31(12): 058104
[5] LV Xue-Qin, JIN Peng, CHEN Hong-Mei, WU Yan-Hua, WANG Fei-Fei, WANG Zhan-Guo. Broadband Light Emission from Chirped Multiple InAs Quantum Dot Structure[J]. Chin. Phys. Lett., 2013, 30(11): 058104
[6] LUO Shuai, JI Hai-Ming, GAO Feng, YANG Xiao-Guang, LIANG Ping, ZHAO Ling-Juan, YANG Tao. InAs/InGaAsP/InP Quantum Dot Lasers Grown by Metalorganic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2013, 30(6): 058104
[7] TIAN Peng, HUANG Li-Rong**, YUAN Xiu-Hua, HUANG De-Xiu . Effects of an InGaAs Cap Layer on the Optical Properties of InAs Quantum Dot Molecules[J]. Chin. Phys. Lett., 2011, 28(6): 058104
[8] A. Rostami, **, H. Rasooli Saghai, H. Baghban, N. Sadoogi, Y. Seyfinejad. Capping-Barrier Layer Effect on Quantum Dot Optoelectronic Characteristics[J]. Chin. Phys. Lett., 2010, 27(10): 058104
[9] ZHAO Wei, YU Zhong-Yuan, LIU Yu-Min, FENG Hao, XU Zi-Huan. Research of Equilibrium Composition Map in Conic Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(5): 058104
[10] JI Hai-Ming, YANG Tao, CAO Yu-Lian, XU Peng-Fei, GU Yong-Xian, MA Wen-Quan, WANG Zhan-Guo. High Characteristic Temperature 1.3μm InAs/GaAs Quantum-Dot Lasers Grown by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2010, 27(2): 058104
[11] LIANG Zhi-Mei, JIN Can, JIN Peng, WU Ju, WANG Zhan-Guo. Temperature Insensitivity of Optical Properties of InAs/GaAs Quantum Dots due to a Pregrown InGaAs Quantum Well[J]. Chin. Phys. Lett., 2009, 26(1): 058104
[12] JIANG Zhong-Wei, WANG Wen-Xin, GAO Han-Chao, LI Hui, YANG Cheng-Liang, HE Tao, WU Dian-Zhong, CHEN Hong, ZHOU Jun-Ming. Effect of GaAs/GaSb Combination Strain-Reducing Layer on Self-Assembled InAs Quantum Dots[J]. Chin. Phys. Lett., 2008, 25(7): 058104
[13] LI Lin, LIU Guo-Jun, WANG Xiao-Hua, LI Mei, LI Zhan-Guo, WAN Chun-Ming. Low Density Self-Assembled InAs/GaAs Quantum Dots Grown by Metal Organic Chemical Vapour Deposition[J]. Chin. Phys. Lett., 2008, 25(2): 058104
[14] LU Yan-Wu, CAI Lin, LIANG Shuang. Strained and Piezoelectric Characteristics of Nitride Quantum Dots[J]. Chin. Phys. Lett., 2006, 23(4): 058104
[15] LOU Chao-Gang. Nonmean-Field Model for Ostwald Ripening of Two-Dimensional Islands[J]. Chin. Phys. Lett., 2004, 21(12): 058104
Viewed
Full text


Abstract