Chin. Phys. Lett.  2015, Vol. 32 Issue (5): 058102    DOI: 10.1088/0256-307X/32/5/058102
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Factors Affecting the Top Stripping of GaAs Microwire Array Fabricated by Inductively Coupled Plasma Etching
CHENG Ying, ZOU Ji-Jun**, WAN Ming, WANG Wei-Lu, PENG Xin-Cun, FENG Lin, DENG Wen-Juan, ZHU Zhi-Fu
Engineering Research Center of New Energy Technology and Equipment of Jiangxi Province, East China Institute of Technology, Nanchang 330013
Cite this article:   
CHENG Ying, ZOU Ji-Jun, WAN Ming et al  2015 Chin. Phys. Lett. 32 058102
Download: PDF(1655KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effects of different masks and patterns on the top stripping of GaAs microwire arrays fabricated by inductively coupled plasma etching for 20 min and 40 min are investigated. The results show that the mask layer is the main affect of the top stripping of the GaAs microwires in 40 min. Increasing the mask layers and reducing the photoresist layers can prevent top stripping and result in a suitable GaAs microwire array.
Received: 18 December 2014      Published: 01 June 2015
PACS:  81.07.Gf (Nanowires)  
  81.05.Ea (III-V semiconductors)  
  81.65.Cf (Surface cleaning, etching, patterning)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/5/058102       OR      https://cpl.iphy.ac.cn/Y2015/V32/I5/058102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHENG Ying
ZOU Ji-Jun
WAN Ming
WANG Wei-Lu
PENG Xin-Cun
FENG Lin
DENG Wen-Juan
ZHU Zhi-Fu
[1] Morton K J, Nieberg G, Bai S f and Chou S Y 2008 Nanotechnology 19 345301
[2] Estrera J P, Bender J E, Giordana A, Glesener J W, Iosue M J, Lin P P and Sinor T W 2000 Proc. SPIE 4128 46
[3] Liu Z, Sun Y, Peterson S and Pianetta P 2008 Appl. Phys. Lett. 92 241107
[4] Machuca F, Liu Z, Sun Y, Pianetta P, Spicer W E and Pease R F W 2002 J. Vac. Sci. Technol. B 20 2721
[5] Orlov D A, Krantz C, Wolf A, Jaroshevich A S, Kosolobov S N, Scheibler H E and Terekhov A S 2009 J. Appl. Phys. 106 054907
[6] Naoto Y, Masahiro Y, Makoto K, Ryosuke S, Takanori M, Kuniaki T, Atsushi M, Akira U, Shouji O, Tsutomu N, Masao K, Chen B, Toru U and Yoshikazu T 2007 J. Appl. Phys. 102 024904
[7] Zhao Y F, Li X H, Shi T F, Wang W B, Zhou B K, Duan H H, Zeng X S, Li N and Wang Y Q 2014 Chin. Phys. Lett. 31 056101
[8] Zhao Z F, Li X H, Wen L, Guo H M, Bu S J and Wang Y Q 2012 Chin. Phys. Lett. 29 118103
[9] Lu X L, Zhang X, Liu X L, Yan X, Cui J G, Li J S, Huang Y Q and Ren X M 2013 Chin. Phys. B 22 066101
[10] Chuang L C, Moewe M, Chase C, Kobayashi N P, ChangHasnain C and Crankshaw S 2007 Appl. Phys. Lett. 90 043115
[11] Paiano P, Prete P, Lovergine N and Mancini A M 2006 J. Appl. Phys. 100 094305
[12] Ye X, Huang H, Ren X M, Yang Y S, Guo J W, Huang Y Q and Wang Q 2010 Chin. Phys. Lett. 27 046101
[13] Bauer J, Gottschalch V, Paetzelt H, Wagner G, Fuhrmann B and Leipner H S 2007 J. Cryst. Growth 298 625
[14] Persson A I, Froberg L E, Jeppesen S, Bjork M T and Samuelson L 2007 J. Appl. Phys. 101 034313
[15] Ohlsson B J, Bjork M T, Magnusson M H, Deppert K, Samuelson L and Wallenberg L R 2001 Appl. Phys. Lett. 79 3335
[16] Yu H and Buhro W E 2003 Adv. Mater. 15 416
[17] Lee J W, Noh S H and Lee S H 2010 Thin Solid Films 518 6488
[18] Chen K, He J J, Li M Y and LaPierre R 2012 Chin. Phys. Lett. 29 036105
[19] Maeda T, Lee J W, Shul R J, Han J, Hong J, Lambers E S, Pearton S J, Abernathy C R and Hobson W S 1999 Appl. Surf. Sci. 143 174
Related articles from Frontiers Journals
[1] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 058102
[2] Ke-Jie Wang, Wei Wang, Min-Hao Zhang, Xiao-Qian Zhang, Pei Yang, Bo Liu, Ming Gao, Da-Wei Huang, Jun-Ran Zhang, Yu-Jie Liu, Xue-Feng Wang, Feng-Qiu Wang, Liang He, Yong-Bing Xu, Rong Zhang. Weak Anti-Localization and Quantum Oscillations in Topological Crystalline Insulator PbTe[J]. Chin. Phys. Lett., 2017, 34(2): 058102
[3] M. A. Khan, A. Qayyum, I. Ahmed, T. Iqbal, A. A. Khan, R. Waleed, B. Mohuddin, M. Malik. Copper Ion Beam Irradiation-Induced Effects on Structural, Morphological and Optical Properties of Tin Dioxide Nanowires[J]. Chin. Phys. Lett., 2016, 33(07): 058102
[4] Peng Ren, Gang Han, Bing-Lei Fu, Bin Xue, Ning Zhang, Zhe Liu, Li-Xia Zhao, Jun-Xi Wang, Jin-Min Li. Selective Area Growth and Characterization of GaN Nanorods Fabricated by Adjusting the Hydrogen Flow Rate and Growth Temperature with Metal Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2016, 33(06): 058102
[5] YANG Shuang, DOU Xiu-Ming, YU Ying, NI Hai-Qiao, NIU Zhi-Chuan, JIANG De-Sheng, SUN Bao-Quan. Single-Photon Emission from GaAs Quantum Dots Embedded in Nanowires[J]. Chin. Phys. Lett., 2015, 32(07): 058102
[6] PAN Dong, WANG Si-Liang, WANG Hai-Long, YU Xue-Zhe, WANG Xiao-Lei, ZHAO Jian-Hua. Structure and Magnetic Properties of (In,Mn)As Based Core-Shell Nanowires Grown on Si(111) by Molecular-Beam Epitaxy[J]. Chin. Phys. Lett., 2014, 31(07): 058102
[7] YANG You-Wen, LI Tian-Ying, ZHU Wen-Bin, MA Dong-Ming, CHEN Dong. Fabrication and Characterization of Single-Crystalline AgSbTe Nanowire Arrays[J]. Chin. Phys. Lett., 2013, 30(10): 058102
[8] LI Lin, MA Chao, YANG Huai-Xin, LI Jian-Qi. Splitting Process of Na-Birnessite Nanosheet via Transmission Electron Microscopy[J]. Chin. Phys. Lett., 2013, 30(8): 058102
[9] ZHAO Zhi-Fei, LI Xin-Hua, WEN Long, GUO Hao-Min, BU Shao-Jiang, WANG Yu-Qi. Orientation and Structure of Controllable GaAs Nanowires Grown on GaAs (311)B Substrates by Molecular Beam Epitaxiy[J]. Chin. Phys. Lett., 2012, 29(11): 058102
[10] YU Zhi-Guo, CHEN Peng YANG Guo-Feng, LIU Bin, XIE Zi-Li, XIU Xiang-Qian, WU Zhen-Long, XU Feng, XU Zhou, HUA Xue-Mei, HAN Ping, SHI Yi ZHANG Rong, ZHENG You-Dou. Influence of Dry Etching Damage on the Internal Quantum Efficiency of Nanorod InGaN/GaN Multiple Quantum Wells[J]. Chin. Phys. Lett., 2012, 29(7): 058102
[11] FENG Qiu-Ju**, JIANG Jun-Yan, TAO Peng-Cheng, LIU Shuang, XU Rui-Zhuo, LI Meng-Ke, SUN Jing-Chang . The Fabrication and Characterization of Well Aligned Petal-Like Arsenic-Doped Zinc Oxide Microrods[J]. Chin. Phys. Lett., 2011, 28(10): 058102
[12] WEI Ang, WANG Zhao, PAN Liu-Hua, LI Wei-Wei, XIONG Li, DONG Xiao-Chen**, HUANG Wei** . Room-Temperature NH Gas Sensor Based on Hydrothermally Grown ZnO Nanorods[J]. Chin. Phys. Lett., 2011, 28(8): 058102
[13] LIU Zhan-Hui, XIU Xiang-Qian**, YAN Huai-Yue, ZHANG Rong, XIE Zi-Li, HAN Ping, SHI Yi, ZHENG You-Dou . Gallium Nitride Nanowires Grown by Hydride Vapor Phase Epitaxy[J]. Chin. Phys. Lett., 2011, 28(5): 058102
[14] BIAN Fei, WANG Rui, YANG Huai-Xin, ZHANG Xin-Zheng, LI Jian-Qi, XU Hong-Xing, XU Jing-Jun, ZHAO Ji-Min. Laser-Driven Silver Nanowire Formation: Effect of Femtosecond Laser Pulse Polarization[J]. Chin. Phys. Lett., 2010, 27(8): 058102
[15] YE Xian, HUANG Hui, REN Xiao-Min, YANG Yi-Su, GUO Jing-Wei, HUANG Yong-Qing, WANG Qi. Growth of Pure Zinc Blende GaAs Nanowires: Effect of Size and Density of Au Nanoparticles[J]. Chin. Phys. Lett., 2010, 27(4): 058102
Viewed
Full text


Abstract