Chin. Phys. Lett.  2015, Vol. 32 Issue (5): 058101    DOI: 10.1088/0256-307X/32/5/058101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Raman Study of Polydimethylsiloxane Substrate Effect on Hydrogenation of Graphene
GAO Chuan-Wei1, WANG Ying-Ying1**, JIANG Jie2, NAN Hai-Yan2, NI Zhen-Hua2
1Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209
2Department of Physics, Southeast University, Nanjing 211189
Cite this article:   
GAO Chuan-Wei, WANG Ying-Ying, JIANG Jie et al  2015 Chin. Phys. Lett. 32 058101
Download: PDF(557KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Raman spectroscopy is used to monitor hydrogenation of graphene on polydimethylsiloxane (PDMS) as well as on SiO2/Si substrates. It is found that hydrogenation of graphene on SiO2/Si is much more feasible than that on PDMS. For graphene on PDMS substrates, hydrogenation of graphene is favored on very flexible substrates. The substrate (SiO2/Si and PDMS) and flexibility (PDMS with different flexibility) dependent hydrogenation behavior can be understood by different interactions between graphene and substrate. The interaction between graphene and SiO2/Si is relative weak (van der Waals force) and the interaction between graphene and PDMS is relative strong, where substrate induced prestrain in the graphene layer is observed. For graphene embedded on the PDMS substrate, the more flexible the substrate is, the weaker the interaction between PDMS and graphene. The understanding of the effect of PDMS's flexibility on hydrogenation of graphene will be helpful for graphene based flexible electronics.
Received: 16 January 2015      Published: 01 June 2015
PACS:  81.05.ue (Graphene)  
  78.30.-j (Infrared and Raman spectra)  
  73.20.-r (Electron states at surfaces and interfaces)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/5/058101       OR      https://cpl.iphy.ac.cn/Y2015/V32/I5/058101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GAO Chuan-Wei
WANG Ying-Ying
JIANG Jie
NAN Hai-Yan
NI Zhen-Hua
[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[2] Gao H L, Wang L, Zhao J J, Ding F and Lu J P 2011 J. Phys. Chem. C 115 3236
[3] Haberer D, Vyalikh D V, Taioli S, Dora B, Farjam M, Fink J, Marchenko D, Pichler T, Ziegler K, Simonucci S, Dresselhaus M S, Knupfer M, Buchner B and Gruneis A 2010 Nano Lett. 10 3360
[4] Luo Z Q, Yu T, Kim K J, Ni Z H, You Y M, Lim S H, Shen Z X, Wang S Z and Lin J Y 2009 ACS Nano 3 1781
[5] Balog R, J ?rgensen B, Wells J, Laegsgaard E, Hofmann P, Besenbacher F and Hornekaer L 2009 J. Am. Chem. Soc. 131 8744
[6] Ng M L, Balog R, Hornek?r L, Preobrajenski A B, Vinogradov N A, M ?rtensson N and Schulte K 2010 J. Phys. Chem. C 114 18559
[7] Jeong H Y, Kim J Y, Kim J W, Hwang J O, Kim J E, Lee J Y, Yoon T H, Cho B J, Kim S O, Ruoff R S and Choi S Y 2010 Nano Lett. 10 4381
[8] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
[9] Ni Z H, Wang Y Y, Yu T and Shen Z X 2008 Nano Res. 1 273
[10] Ferrari A C and Basko D M 2013 Nat. Nanotechnol. 8 235
[11] Bissett M A, Izumida W, Saito R and Ago H 2012 ACS Nano 6 10229
[12] Cancado L G, Jorio A, Martins Ferreira E H, Stavale F, Achete C A, Capaz R B, Moutinho M V O, Lombardo A, Kulmala T S and Ferrari A C 2011 Nano Lett. 11 3190
[13] Yan J, Zhang Y B, Kim P and Pinczuk A 2007 Phys. Rev. Lett. 98 166802
[14] Huang M Y, Yan H, Heinz T F and Hone J 2010 Nano Lett. 10 4074
[15] Wang Y Y, Ni Z H, Yu T, Shen Z X, Wang H M, Wu Y H, Chen W and Wee A T S 2008 J. Phys. Chem. C 112 10637
[16] Ryu S, Liu L, Berciaud S, Yu Y J, Liu H T, Kim P, Flynn G W and Brus L E 2010 Nano Lett. 10 4944
[17] Yamamoto M, Einstein T L, Fuhrer M S and Cullen W G 2012 ACS Nano 6 8335
[18] Balog R, Andersen M, J ?rgensen B, Sljivancanin Z, Hammer B, Baraldi A, Larciprete R, Hofmann P, Hornek?r L and Lizzit S 2013 ACS Nano 7 3823
[19] Srivastava I, Mehta R J, Yu Z Z, Schadler L and Koratkar N 2011 Appl. Phys. Lett. 98 063102
[20] Flores M Z S, Autreto P A S, Legoas S B and Galvao D S 2009 Nanotechnology 20 465704
Related articles from Frontiers Journals
[1] Jia-Jun Ma, Zhen-Yu Wang, Shui-Gang Xu, Yu-Xiang Gao, Yu-Yang Zhang, Qing Dai, Xiao Lin, Shi-Xuan Du, Jindong Ren, and Hong-Jun Gao. Local Density of States Modulated by Strain in Marginally Twisted Bilayer Graphene[J]. Chin. Phys. Lett., 2022, 39(4): 058101
[2] Xiao-Feng Li, Ruo-Xuan Sun, Su-Yun Wang, Xiao Li, Zhi-Bo Liu, and Jian-Guo Tian. Recent Advances in Moiré Superlattice Structures of Twisted Bilayer and Multilayer Graphene[J]. Chin. Phys. Lett., 2022, 39(3): 058101
[3] Fuxin Wang, Chao Zhang, Yanmei Yang, Yuanyuan Qu, Yong-Qiang Li, Baoyuan Man, and Weifeng Li. Tuning the Water Desalination Performance of Graphenic Layered Nanomaterials by Element Doping and Inter-Layer Spacing[J]. Chin. Phys. Lett., 2020, 37(11): 058101
[4] Zhibin Zhang, Jiajie Qi, Mengze Zhao, Nianze Shang, Yang Cheng, Ruixi Qiao, Zhihong Zhang, Mingchao Ding, Xingguang Li, Kehai Liu, Xiaozhi Xu, Kaihui Liu, Can Liu, and Muhong Wu. Scrolled Production of Large-Scale Continuous Graphene on Copper Foils[J]. Chin. Phys. Lett., 2020, 37(10): 058101
[5] Zhong Wang, Zhiyang Yuan, and Feng Liu. Extended Nernst–Planck Equation Incorporating Partial Dehydration Effect[J]. Chin. Phys. Lett., 2020, 37(9): 058101
[6] Hao-Jing Zhang, Gai-Ge Zheng, Yun-Yun Chen, Xiu-Juan Zou, Lin-Hua Xu. A Perfect Graphene Absorber with Waveguide Coupled High-Contrast Gratings[J]. Chin. Phys. Lett., 2018, 35(3): 058101
[7] S. Fahad, M. Ali, S. Ahmed, S. Khan, S. Alam, S. Akhtar. Effect of Metal Contact and Rapid Thermal Annealing on Electrical Characteristics of Graphene Matrix[J]. Chin. Phys. Lett., 2017, 34(10): 058101
[8] Ren-Xia Ning, Zheng Jiao, Jie Bao. Narrow and Dual-Band Tunable Absorption of a Composite Structure with a Graphene Metasurface[J]. Chin. Phys. Lett., 2017, 34(10): 058101
[9] ZHANG Yu-Ping, LI Tong-Tong, LV Huan-Huan, HUANG Xiao-Yan, ZHANG Xiao, XU Shi-Lin, ZHANG Hui-Yun. Graphene-Based Tunable Polarization Insensitive Dual-Band Metamaterial Absorber at Mid-Infrared Frequencies[J]. Chin. Phys. Lett., 2015, 32(06): 058101
[10] ZHOU Xiang, CHEN Ji, GU Lin, MIAO Ling. Li Storage Performance for the Composite Structure Of Graphene and Boron Fullerene[J]. Chin. Phys. Lett., 2015, 32(02): 058101
[11] LIU Qing-Bin, YU Cui, LI Jia, SONG Xu-Bo, HE Ze-Zhao, LU Wei-Li, GU Guo-Dong, WANG Yuan-Gang, FENG Zhi-Hong. Radio-Frequency Performance of Epitaxial Graphene Field-Effect Transistors on Sapphire Substrates[J]. Chin. Phys. Lett., 2014, 31(07): 058101
[12] LUO Wen-Gang, WANG Hua-Feng, CAI Kai-Ming, HAN Wen-Peng, TAN Ping-Heng, HU Ping-An, WANG Kai-You. Synthesis of Homogenous Bilayer Graphene on Industrial Cu Foil[J]. Chin. Phys. Lett., 2014, 31(06): 058101
[13] CHEN Ya-Qin. Determination of the In-Plane Optical Conductivity of Multilayer Graphene Supported on a Transparent Substrate of Finite Thickness from Normal-Incidence Transmission Spectra[J]. Chin. Phys. Lett., 2014, 31(05): 058101
[14] Tatnatchai Suwannasit, Rassmidara Hoonsawat, I-Ming Tang, Bumned Soodchomshom. Josephson Effect in Graphene: Comparison of Real and Pseudo Vector Potential Barriers[J]. Chin. Phys. Lett., 2014, 31(03): 058101
[15] Bumned Soodchomshom. Pseudo Spin Torque Induced by Strain Field of Dirac Fermions in Graphene[J]. Chin. Phys. Lett., 2013, 30(12): 058101
Viewed
Full text


Abstract