CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Raman Study of Polydimethylsiloxane Substrate Effect on Hydrogenation of Graphene |
GAO Chuan-Wei1, WANG Ying-Ying1**, JIANG Jie2, NAN Hai-Yan2, NI Zhen-Hua2 |
1Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209 2Department of Physics, Southeast University, Nanjing 211189
|
|
Cite this article: |
GAO Chuan-Wei, WANG Ying-Ying, JIANG Jie et al 2015 Chin. Phys. Lett. 32 058101 |
|
|
Abstract Raman spectroscopy is used to monitor hydrogenation of graphene on polydimethylsiloxane (PDMS) as well as on SiO2/Si substrates. It is found that hydrogenation of graphene on SiO2/Si is much more feasible than that on PDMS. For graphene on PDMS substrates, hydrogenation of graphene is favored on very flexible substrates. The substrate (SiO2/Si and PDMS) and flexibility (PDMS with different flexibility) dependent hydrogenation behavior can be understood by different interactions between graphene and substrate. The interaction between graphene and SiO2/Si is relative weak (van der Waals force) and the interaction between graphene and PDMS is relative strong, where substrate induced prestrain in the graphene layer is observed. For graphene embedded on the PDMS substrate, the more flexible the substrate is, the weaker the interaction between PDMS and graphene. The understanding of the effect of PDMS's flexibility on hydrogenation of graphene will be helpful for graphene based flexible electronics.
|
|
Received: 16 January 2015
Published: 01 June 2015
|
|
|
|
|
|
[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 [2] Gao H L, Wang L, Zhao J J, Ding F and Lu J P 2011 J. Phys. Chem. C 115 3236 [3] Haberer D, Vyalikh D V, Taioli S, Dora B, Farjam M, Fink J, Marchenko D, Pichler T, Ziegler K, Simonucci S, Dresselhaus M S, Knupfer M, Buchner B and Gruneis A 2010 Nano Lett. 10 3360 [4] Luo Z Q, Yu T, Kim K J, Ni Z H, You Y M, Lim S H, Shen Z X, Wang S Z and Lin J Y 2009 ACS Nano 3 1781 [5] Balog R, J ?rgensen B, Wells J, Laegsgaard E, Hofmann P, Besenbacher F and Hornekaer L 2009 J. Am. Chem. Soc. 131 8744 [6] Ng M L, Balog R, Hornek?r L, Preobrajenski A B, Vinogradov N A, M ?rtensson N and Schulte K 2010 J. Phys. Chem. C 114 18559 [7] Jeong H Y, Kim J Y, Kim J W, Hwang J O, Kim J E, Lee J Y, Yoon T H, Cho B J, Kim S O, Ruoff R S and Choi S Y 2010 Nano Lett. 10 4381 [8] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706 [9] Ni Z H, Wang Y Y, Yu T and Shen Z X 2008 Nano Res. 1 273 [10] Ferrari A C and Basko D M 2013 Nat. Nanotechnol. 8 235 [11] Bissett M A, Izumida W, Saito R and Ago H 2012 ACS Nano 6 10229 [12] Cancado L G, Jorio A, Martins Ferreira E H, Stavale F, Achete C A, Capaz R B, Moutinho M V O, Lombardo A, Kulmala T S and Ferrari A C 2011 Nano Lett. 11 3190 [13] Yan J, Zhang Y B, Kim P and Pinczuk A 2007 Phys. Rev. Lett. 98 166802 [14] Huang M Y, Yan H, Heinz T F and Hone J 2010 Nano Lett. 10 4074 [15] Wang Y Y, Ni Z H, Yu T, Shen Z X, Wang H M, Wu Y H, Chen W and Wee A T S 2008 J. Phys. Chem. C 112 10637 [16] Ryu S, Liu L, Berciaud S, Yu Y J, Liu H T, Kim P, Flynn G W and Brus L E 2010 Nano Lett. 10 4944 [17] Yamamoto M, Einstein T L, Fuhrer M S and Cullen W G 2012 ACS Nano 6 8335 [18] Balog R, Andersen M, J ?rgensen B, Sljivancanin Z, Hammer B, Baraldi A, Larciprete R, Hofmann P, Hornek?r L and Lizzit S 2013 ACS Nano 7 3823 [19] Srivastava I, Mehta R J, Yu Z Z, Schadler L and Koratkar N 2011 Appl. Phys. Lett. 98 063102 [20] Flores M Z S, Autreto P A S, Legoas S B and Galvao D S 2009 Nanotechnology 20 465704 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|