Chin. Phys. Lett.  2015, Vol. 32 Issue (5): 057402    DOI: 10.1088/0256-307X/32/5/057402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Tuning the Electronic Structure of Sr2IrO4 Thin Films by Bulk Electronic Doping Using Molecular Beam Epitaxy
LI Ming-Ying1, LIU Zheng-Tai1, YANG Hai-Feng1, ZHAO Jia-Lin1, YAO Qi1,2, FAN Cong-Cong1, LIU Ji-Shan1, GAO Bo1, SHEN Da-Wei1**, XIE Xiao-Ming1
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050
2State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200433
Cite this article:   
LI Ming-Ying, LIU Zheng-Tai, YANG Hai-Feng et al  2015 Chin. Phys. Lett. 32 057402
Download: PDF(1281KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By means of oxide molecular beam epitaxy with shutter-growth mode, we fabricate a series of electron-doped (Sr1?xLax)2IrO4 (001) (x=0, 0.05, 0.1 and 0.15) single crystalline thin films and then investigate the doping dependence of the electronic structure utilizing in-situ angle-resolved photoemission spectroscopy. It is found that with the increasing doping content, the Fermi levels of samples progressively shift upward. Prominently, an extra electron pocket crossing the Fermi level around the M point is evidently observed in the 15% nominal doping sample. Moreover, bulk-sensitive transport measurements confirm that the doping effectively suppresses the insulating state with respect to the as-grown Sr2IrO4, though the doped samples still remain insulating at low temperatures due to the localization effect possibly stemming from disorders including oxygen deficiencies. Our work provides another feasible doping method to tune electronic structure of Sr2IrO4.
Received: 16 April 2015      Published: 01 June 2015
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  73.21.Ac (Multilayers)  
  77.55.Px (Epitaxial and superlattice films)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/5/057402       OR      https://cpl.iphy.ac.cn/Y2015/V32/I5/057402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Ming-Ying
LIU Zheng-Tai
YANG Hai-Feng
ZHAO Jia-Lin
YAO Qi
FAN Cong-Cong
LIU Ji-Shan
GAO Bo
SHEN Da-Wei
XIE Xiao-Ming
[1] Pesin D and Balents L 2010 Nat. Phys. 6 376
[2] Kim B J, Ohsumi H, Komesu T, Sakai S, Morita T, Takagi H and Arima T 2009 Science 323 1329
[3] Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205
[4] Yang K Y, Lu Y M and Ran Y 2011 Phys. Rev. B 84 075129
[5] Witczak-Krempa W, Chen G, Kim Y B and Balents L 2014 Annu. Rev. Condens. Matter Phys. 5 57
[6] Wan X G, Vishwanath A and Savrasov S Y 2012 Phys. Rev. Lett. 108 146601
[7] Balents L 2010 Nature 464 199
[8] Wen X G 2002 Phys. Rev. B 65 165113
[9] Lawler M J, Paramekanti A, Kim Y B and Balents L 2008 Phys. Rev. Lett. 101 197202
[10] Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G and Rotenberg E 2008 Phys. Rev. Lett. 101 076402
[11] Kim J, Casa D, Upton M H, Gog T, Kim Y J, Mitchell J F, van Veenendaal M, Daghofer M, van den Brink J, Khaliullin G and Kim B J 2012 Phys. Rev. Lett. 108 177003
[12] Fujiyama S, Ohsumi H, Komesu T, Matsuno J, Kim B J, Takata M, Arima T and Takagi H 2012 Phys. Rev. Lett. 108 247212
[13] Watanabe H, Shirakawa T and Yunoki S 2013 Phys. Rev. Lett. 110 027002
[14] Ge M, Qi T F, Korneta O B, De Long D E, Schlottmann P, Crummett W P and Cao G 2011 Phys. Rev. B 84 100402
[15] Qi T F, Korneta O B, Li L, Butrouna K, Cao V S, Wan X G, Schlottmann P, Kaul R K and Cao G 2012 Phys. Rev. B 86 125105
[16] Kim Y K, Krupin O, Denlinger J D, Bostwick A, Rotenberg E, Zhao Q, Mitchell J F, Allen J W and Kim B J 2014 Science 345 187
[17] Korneta O B, Qi T F, Chikara S, Parkin S, De Long L E, Schlottmann P and Cao G 2010 Phys. Rev. B 82 115117
[18] Nichols J, Terzic J, Bittle E G, Korneta O B, De Long L E, Brill J W, Cao G and Seo S S A 2013 Appl. Phys. Lett. 102 141908
[19] Serrao C R, Liu J, Heron J T, Singh-Bhalla G, Yadav A, Suresha S J, Paull R J, Yi D, Chu J H, Trassin M, Vishwanath A, Arenholz E, Frontera C, Zelezny J, Jungwirth T, Marti X and Ramesh R 2013 Phys. Rev. B 87 085121
[20] Miao L D, Xu H and Mao Z Q 2014 Phys. Rev. B 89 035109
[21] Lee J S, Krockenberger Y, Takahashi K S, Kawasaki M and Tokura Y 2012 Phys. Rev. B 85 035101
[22] de la Torre A, Hunter E C, Subedi A, Mckeown Walker S, Tamai A, Kim T K, Hoesch M, Perry R S, Georges A and Baumberger F 2014 Phys. Rev. Lett. 113 256402
[23] He J H, Hafiz H, Mion T R, Hogan T, Dhital C, Chen X, Lin Q, Hashimoto M, Lu D H, Zhang Y, Markiewicz R S, Bansil A, Wilson S D and He R H 2015 Sci. Rep. 5 8533
[24] Kawasaki M, Takahashi K, Maeda T, Tsuchiya R, Shinohara M, Ishiyama O, Yonezawa T, Yoshimoto M and Koinuma H 1994 Science 266 1540
[25] Crawford M K, Subramanian M A, Harlow R L, Fernandez-Baca J A, Wang Z R and Johnston D C 1994 Phys. Rev. B 49 9198
[26] Arita R, Kunes J, Kozhevnikov A V, Eguiluz A G and Imada M 2012 Phys. Rev. Lett. 108 086403
[27] Martins C, Aichihorn M, Vaugier L and Biermann S 2011 Phys. Rev. Lett. 107 266404
[28] Watanabe H, Shirakawa T and Yunoki S 2010 Phys. Rev. Lett. 105 216410
[29] Scherwitzl R, Gariglio S, Gabay M, Zubko P, Gibert M and Triscone J M 2011 Phys. Rev. Lett. 106 246403
[30] Brenig W, Dohler G H and Heyszenau H 1973 Philos. Mag. 27 1093
[31] Dai J X, Calleja E, Cao G and McElroy K 2014 Phys. Rev. B 90 041102(R)
Related articles from Frontiers Journals
[1] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 057402
[2] Sheng Wang, Zia ur Rehman, Zhanfeng Liu, Tongrui Li, Yuliang Li, Yunbo Wu, Hongen Zhu, Shengtao Cui, Yi Liu, Guobin Zhang, Li Song, and Zhe Sun. Tailoring of Bandgap and Spin-Orbit Splitting in ZrSe$_{2}$ with Low Substitution of Ti for Zr[J]. Chin. Phys. Lett., 2022, 39(7): 057402
[3] Lulu Liu, Shoutao Zhang, and Haijun Zhang. Pressure-Driven Ne-Bearing Polynitrides with Ultrahigh Energy Density[J]. Chin. Phys. Lett., 2022, 39(5): 057402
[4] Kun Luo, Baozhong Li, Lei Sun, Yingju Wu, Yanfeng Ge, Bing Liu, Julong He, Bo Xu, Zhisheng Zhao, and Yongjun Tian. Novel Boron Nitride Polymorphs with Graphite-Diamond Hybrid Structure[J]. Chin. Phys. Lett., 2022, 39(3): 057402
[5] Bin Han, Junjie Zeng, and Zhenhua Qiao. In-Plane Magnetization-Induced Corner States in Bismuthene[J]. Chin. Phys. Lett., 2022, 39(1): 057402
[6] Zhe Huang, Xianbiao Shi, Gaoning Zhang, Zhengtai Liu, Soohyun Cho, Zhicheng Jiang, Zhonghao Liu, Jishan Liu, Yichen Yang, Wei Xia, Weiwei Zhao, Yanfeng Guo, and Dawei Shen. Photoemission Spectroscopic Evidence of Multiple Dirac Cones in Superconducting BaSn$_3$[J]. Chin. Phys. Lett., 2021, 38(10): 057402
[7] Wen-Han Dong, De-Liang Bao, Jia-Tao Sun, Feng Liu, and Shixuan Du. Manipulation of Dirac Fermions in Nanochain-Structured Graphene[J]. Chin. Phys. Lett., 2021, 38(9): 057402
[8] Yi Jiang, Zhong Fang, and Chen Fang. A $\boldsymbol{k}$$\cdot$$\boldsymbol{p}$ Effective Hamiltonian Generator[J]. Chin. Phys. Lett., 2021, 38(7): 057402
[9] Zhilin Xu, Shuai-Hua Ji, Lin Tang, Jian Wu, Na Li, Xinqiang Cai, and Xi Chen. Molecular Beam Epitaxy Growth and Electronic Structures of Monolayer GdTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 057402
[10] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 057402
[11] Yongqing Cai, Tao Xie, Huan Yang, Dingsong Wu, Jianwei Huang, Wenshan Hong, Lu Cao, Chang Liu, Cong Li, Yu Xu, Qiang Gao, Taimin Miao, Guodong Liu, Shiliang Li, Li Huang, Huiqian Luo, Zuyan Xu, Hongjun Gao, Lin Zhao, and X. J. Zhou. Common ($\pi$,$\pi$) Band Folding and Surface Reconstruction in FeAs-Based Superconductors[J]. Chin. Phys. Lett., 2021, 38(5): 057402
[12] Zhenjiang Han, Han Liu, Quan Li, Dan Zhou, and Jian Lv. Superior Mechanical Properties of GaAs Driven by Lattice Nanotwinning[J]. Chin. Phys. Lett., 2021, 38(4): 057402
[13] Yun-Xian Liu , Chao Wang, Shuai Han , Xin Chen , Hai-Rui Sun , and Xiao-Bing Liu. Novel Superconducting Electrides in Ca–S System under High Pressures[J]. Chin. Phys. Lett., 2021, 38(3): 057402
[14] Chen Qiu, Ruyue Cao, Cai-Xin Zhang, Chen Zhang, Dan Guo, Tao Shen, Zhu-You Liu, Yu-Ying Hu, Fei Wang, and Hui-Xiong Deng. First-Principles Study of Intrinsic Point Defects of Monolayer GeS[J]. Chin. Phys. Lett., 2021, 38(2): 057402
[15] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 057402
Viewed
Full text


Abstract