CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Tuning the Electronic Structure of Sr2IrO4 Thin Films by Bulk Electronic Doping Using Molecular Beam Epitaxy |
LI Ming-Ying1, LIU Zheng-Tai1, YANG Hai-Feng1, ZHAO Jia-Lin1, YAO Qi1,2, FAN Cong-Cong1, LIU Ji-Shan1, GAO Bo1, SHEN Da-Wei1**, XIE Xiao-Ming1 |
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050 2State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200433
|
|
Cite this article: |
LI Ming-Ying, LIU Zheng-Tai, YANG Hai-Feng et al 2015 Chin. Phys. Lett. 32 057402 |
|
|
Abstract By means of oxide molecular beam epitaxy with shutter-growth mode, we fabricate a series of electron-doped (Sr1?xLax)2IrO4 (001) (x=0, 0.05, 0.1 and 0.15) single crystalline thin films and then investigate the doping dependence of the electronic structure utilizing in-situ angle-resolved photoemission spectroscopy. It is found that with the increasing doping content, the Fermi levels of samples progressively shift upward. Prominently, an extra electron pocket crossing the Fermi level around the M point is evidently observed in the 15% nominal doping sample. Moreover, bulk-sensitive transport measurements confirm that the doping effectively suppresses the insulating state with respect to the as-grown Sr2IrO4, though the doped samples still remain insulating at low temperatures due to the localization effect possibly stemming from disorders including oxygen deficiencies. Our work provides another feasible doping method to tune electronic structure of Sr2IrO4.
|
|
Received: 16 April 2015
Published: 01 June 2015
|
|
PACS: |
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
73.21.Ac
|
(Multilayers)
|
|
77.55.Px
|
(Epitaxial and superlattice films)
|
|
|
|
|
[1] Pesin D and Balents L 2010 Nat. Phys. 6 376 [2] Kim B J, Ohsumi H, Komesu T, Sakai S, Morita T, Takagi H and Arima T 2009 Science 323 1329 [3] Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205 [4] Yang K Y, Lu Y M and Ran Y 2011 Phys. Rev. B 84 075129 [5] Witczak-Krempa W, Chen G, Kim Y B and Balents L 2014 Annu. Rev. Condens. Matter Phys. 5 57 [6] Wan X G, Vishwanath A and Savrasov S Y 2012 Phys. Rev. Lett. 108 146601 [7] Balents L 2010 Nature 464 199 [8] Wen X G 2002 Phys. Rev. B 65 165113 [9] Lawler M J, Paramekanti A, Kim Y B and Balents L 2008 Phys. Rev. Lett. 101 197202 [10] Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G and Rotenberg E 2008 Phys. Rev. Lett. 101 076402 [11] Kim J, Casa D, Upton M H, Gog T, Kim Y J, Mitchell J F, van Veenendaal M, Daghofer M, van den Brink J, Khaliullin G and Kim B J 2012 Phys. Rev. Lett. 108 177003 [12] Fujiyama S, Ohsumi H, Komesu T, Matsuno J, Kim B J, Takata M, Arima T and Takagi H 2012 Phys. Rev. Lett. 108 247212 [13] Watanabe H, Shirakawa T and Yunoki S 2013 Phys. Rev. Lett. 110 027002 [14] Ge M, Qi T F, Korneta O B, De Long D E, Schlottmann P, Crummett W P and Cao G 2011 Phys. Rev. B 84 100402 [15] Qi T F, Korneta O B, Li L, Butrouna K, Cao V S, Wan X G, Schlottmann P, Kaul R K and Cao G 2012 Phys. Rev. B 86 125105 [16] Kim Y K, Krupin O, Denlinger J D, Bostwick A, Rotenberg E, Zhao Q, Mitchell J F, Allen J W and Kim B J 2014 Science 345 187 [17] Korneta O B, Qi T F, Chikara S, Parkin S, De Long L E, Schlottmann P and Cao G 2010 Phys. Rev. B 82 115117 [18] Nichols J, Terzic J, Bittle E G, Korneta O B, De Long L E, Brill J W, Cao G and Seo S S A 2013 Appl. Phys. Lett. 102 141908 [19] Serrao C R, Liu J, Heron J T, Singh-Bhalla G, Yadav A, Suresha S J, Paull R J, Yi D, Chu J H, Trassin M, Vishwanath A, Arenholz E, Frontera C, Zelezny J, Jungwirth T, Marti X and Ramesh R 2013 Phys. Rev. B 87 085121 [20] Miao L D, Xu H and Mao Z Q 2014 Phys. Rev. B 89 035109 [21] Lee J S, Krockenberger Y, Takahashi K S, Kawasaki M and Tokura Y 2012 Phys. Rev. B 85 035101 [22] de la Torre A, Hunter E C, Subedi A, Mckeown Walker S, Tamai A, Kim T K, Hoesch M, Perry R S, Georges A and Baumberger F 2014 Phys. Rev. Lett. 113 256402 [23] He J H, Hafiz H, Mion T R, Hogan T, Dhital C, Chen X, Lin Q, Hashimoto M, Lu D H, Zhang Y, Markiewicz R S, Bansil A, Wilson S D and He R H 2015 Sci. Rep. 5 8533 [24] Kawasaki M, Takahashi K, Maeda T, Tsuchiya R, Shinohara M, Ishiyama O, Yonezawa T, Yoshimoto M and Koinuma H 1994 Science 266 1540 [25] Crawford M K, Subramanian M A, Harlow R L, Fernandez-Baca J A, Wang Z R and Johnston D C 1994 Phys. Rev. B 49 9198 [26] Arita R, Kunes J, Kozhevnikov A V, Eguiluz A G and Imada M 2012 Phys. Rev. Lett. 108 086403 [27] Martins C, Aichihorn M, Vaugier L and Biermann S 2011 Phys. Rev. Lett. 107 266404 [28] Watanabe H, Shirakawa T and Yunoki S 2010 Phys. Rev. Lett. 105 216410 [29] Scherwitzl R, Gariglio S, Gabay M, Zubko P, Gibert M and Triscone J M 2011 Phys. Rev. Lett. 106 246403 [30] Brenig W, Dohler G H and Heyszenau H 1973 Philos. Mag. 27 1093 [31] Dai J X, Calleja E, Cao G and McElroy K 2014 Phys. Rev. B 90 041102(R) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|