Chin. Phys. Lett.  2015, Vol. 32 Issue (5): 057302    DOI: 10.1088/0256-307X/32/5/057302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The First Principles Study of Hydrogen Adsorption on Ni-Decorated LiB (001) Surface
ZHANG Fu-Chun1, LIU Yang2, ZHANG Wei-Bin1,3**
1College of Physics and Electronic Information, Yan'an University, Yan'an 716000
2Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 100715, Korea
3Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610064
Cite this article:   
ZHANG Fu-Chun, LIU Yang, ZHANG Wei-Bin 2015 Chin. Phys. Lett. 32 057302
Download: PDF(779KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The hydrogen adsorption on the one and three Ni?decorated LiB (001) 2×2 surface is investigated by the first principles study. It is demonstrated that Ni atoms are preferentially adsorbed on the top B atom, and form a covalent bond of NiB and an ionic bond of NiLi on the surface. Four H2 molecules can adsorb on the one?Ni-decorated LiB (001) surface, and the average adsorption energy is in a range from -0.35 to -0.58 eV/H2. The charge population analysis shows that the dipole moments on the Ni decorated surface is responsible for the polarization and adsorption of H2. Then, we show that three Ni atoms can be decorated on the LiB (001) 2×2 surface, and form a Ni3B nano cluster on the surface, which agrees with experimental results. Three Ni-decorated LiB (001) can adsorb up to six H2 molecules, indicating that the Ni-decorated LiB (001) system might be a promising hydrogen storage material.
Received: 06 January 2015      Published: 01 June 2015
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  68.43.Bc (Ab initio calculations of adsorbate structure and reactions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/5/057302       OR      https://cpl.iphy.ac.cn/Y2015/V32/I5/057302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Fu-Chun
LIU Yang
ZHANG Wei-Bin
[1] Tao S X, Notten P H L, Santen R A V and Jansen A P J 2011 Phys. Rev. B 83 195403
[2] Kyuho L, Kim Y H and Sun Y Y 2010 Phys. Rev. Lett. 104 36101
[3] Liu C and Fan Y Y 1999 Science 286 1127
[4] Aeberhard P C and Refson K 2011 Phys. Rev. B 83 174102
[5] Zbigniew L 2010 Phys. Rev. B 81 144108
[6] Ngene P, Verkuijlen M H W and Zheng Q 2011 Faraday Discuss 151 47
[7] Graetz J, Chaudhuri S and Salguero T T 2009 Nanotechnology 20 204007
[8] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[9] Payne M C, Teter M P and Allan D C 1992 Rev. Mod. Phys. 64 1045
[10] Perdew J P, Chevary J A and Vosko S H 1992 Phys. Rev. B 46 6671 Phys. Rev. B 1993 48 4978
[11] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[12] Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768
[13] Vanderbilt D 1990 Phys. Rev. B 41 7892
[14] Liu Z J and Qu X H 2000 J. Alloys Compd. 311 256
[15] Huang W L 2009 J. Comput. Chem. 30 1882
Related articles from Frontiers Journals
[1] Yuan Wang, Yixuan Liu, Zhanyang Hao, Wenjing Cheng, Junze Deng, Yuxin Wang, Yuhao Gu, Xiao-Ming Ma, Hongtao Rong, Fayuan Zhang, Shu Guo, Chengcheng Zhang, Zhicheng Jiang, Yichen Yang, Wanling Liu, Qi Jiang, Zhengtai Liu, Mao Ye, Dawei Shen, Yi Liu, Shengtao Cui, Le Wang, Cai Liu, Junhao Lin, Ying Liu, Yongqing Cai, Jinlong Zhu, Chaoyu Chen, and Jia-Wei Mei. Flat Band and $\mathbb{Z}_2$ Topology of Kagome Metal CsTi$_{3}$Bi$_{5}$[J]. Chin. Phys. Lett., 2023, 40(3): 057302
[2] Yue Li, Li Zhu, Chunsheng Chen, Ying Zhu, Changjin Wan, and Qing Wan. High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al$_{2}$O$_{3}$/HfO$_{2}$ Dielectrics[J]. Chin. Phys. Lett., 2022, 39(11): 057302
[3] Juan-Juan Hao, Pei-Han Sun, Ming Zhang, Xian-Xin Wu, Kai Liu, and Fan Yang. First-Principles Study of Hole-Doped Superconductors $R$NiO$_2$ ($R$ = Nd, La, and Pr)[J]. Chin. Phys. Lett., 2022, 39(6): 057302
[4] Xiaoxia Li, Qili Li, Tongzhou Ji, Ruige Yan, Wenlin Fan, Bingfeng Miao, Liang Sun, Gong Chen, Weiyi Zhang, and Haifeng Ding. Lieb Lattices Formed by Real Atoms on Ag(111) and Their Lattice Constant-Dependent Electronic Properties[J]. Chin. Phys. Lett., 2022, 39(5): 057302
[5] Danwen Yuan, Yuefang Hu, Yanmin Yang, and Wei Zhang. Topological Properties in Strained Monolayer Antimony Iodide[J]. Chin. Phys. Lett., 2021, 38(11): 057302
[6] Guohui Zhan, Minji Shi, Zhilong Yang, and Haijun Zhang. A Programmable k$\cdot$p Hamiltonian Method and Application to Magnetic Topological Insulator MnBi$_2$Te$_4$[J]. Chin. Phys. Lett., 2021, 38(7): 057302
[7] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 057302
[8] Changyuan Zhou , Dezhi Song , Yeping Jiang, and Jun Zhang . Modification of the Hybridization Gap by Twisted Stacking of Quintuple Layers in a Three-Dimensional Topological Insulator Thin Film[J]. Chin. Phys. Lett., 2021, 38(5): 057302
[9] Rubah Kausar, Chao Zheng, and Xin Wan. Level Statistics Crossover of Chiral Surface States in a Three-Dimensional Quantum Hall System[J]. Chin. Phys. Lett., 2021, 38(5): 057302
[10] Lei Sun, Xiaoming Zhang, Han Gao, Jian Liu, Feng Liu, and Mingwen Zhao. Inversion/Mirror Symmetry-Protected Dirac Cones in Distorted Ruby Lattices[J]. Chin. Phys. Lett., 2020, 37(12): 057302
[11] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 057302
[12] Xiao-Ran Wang , Cui-Xian Guo , Qian Du , and Su-Peng Kou. State-Dependent Topological Invariants and Anomalous Bulk-Boundary Correspondence in Non-Hermitian Topological Systems with Generalized Inversion Symmetry[J]. Chin. Phys. Lett., 2020, 37(11): 057302
[13] Yong-Hua Cao, Jin-Tao Bai, and Hong-Jian Feng. Perovskite Termination-Dependent Charge Transport Behaviors of the CsPbI$_{3}$/Black Phosphorus van der Waals Heterostructure[J]. Chin. Phys. Lett., 2020, 37(10): 057302
[14] Pengdong Wang, Yihao Wang, Bo Zhang, Yuliang Li, Sheng Wang, Yunbo Wu, Hongen Zhu, Yi Liu, Guobin Zhang, Dayong Liu, Yimin Xiong, and Zhe Sun. Experimental Observation of Electronic Structures of Kagome Metal YCr$_{6}$Ge$_{6}$[J]. Chin. Phys. Lett., 2020, 37(8): 057302
[15] Zhihai Cui, Yuting Qian, Wei Zhang, Hongming Weng, and Zhong Fang. Type-II Dirac Semimetal State in a Superconductor Tantalum Carbide[J]. Chin. Phys. Lett., 2020, 37(8): 057302
Viewed
Full text


Abstract