Chin. Phys. Lett.  2015, Vol. 32 Issue (5): 057301    DOI: 10.1088/0256-307X/32/5/057301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
GaNAs/InGaAs Superlattice Solar Cells with High N Content in the Barrier Grown by All Solid-State Molecular Beam Epitaxy
LU Jian-Ya1,2, ZHENG Xin-He1,3**, WANG Nai-Ming1, CHEN Xi1, LI Bao-Ji1, LU Shu-Long1, YANG Hui1
1Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123
2School of Materials Science and Engineering, Shanghai University, Shanghai 200444
3Department of Physics, College of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083
Cite this article:   
LU Jian-Ya, ZHENG Xin-He, WANG Nai-Ming et al  2015 Chin. Phys. Lett. 32 057301
Download: PDF(620KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate nearly 1 eV GaN0.03As0.97/In0.09Ga0.91As strain-compensated short-period superlattice solar cells by all solid-state molecular beam epitaxy. The optimal period thickness for the superlattice growth is achieved to realize high structural quality. Meanwhile, the annealing conditions are optimized to realize a photoluminescence (PL) at a low temperature. However, no PL signal is detected at room temperature, which could be reflected by a lower open-circuit voltage of the fabricated devices. The GaN0.03As0.97/In0.09Ga0.91As superlattice solar cells show a reasonably-high short-circuit current density (Jsc) of over 10 mA/cm2. Furthermore, a concentration behavior is measured, which shows a linear relationship between Jsc and concentration ratios. The extrapolated ideality factor and saturated current density by the concentration action are in good agreement with that extracted by the dark case of the p-i-n diodes.
Received: 05 December 2014      Published: 01 June 2015
PACS:  73.21.Cd (Superlattices)  
  88.40.H- (Solar cells (photovoltaics))  
  73.61.Ey (III-V semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/5/057301       OR      https://cpl.iphy.ac.cn/Y2015/V32/I5/057301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LU Jian-Ya
ZHENG Xin-He
WANG Nai-Ming
CHEN Xi
LI Bao-Ji
LU Shu-Long
YANG Hui
[1] Kurtz S R, Myers D and Olson J M 1997 The Proceedings of the 26th IEEE Photovoltaic Specialists Conference (Anaheim, September 29–October 3 1997) p 875
[2] Hong Y G et al 2001 J. Cryst. Growth 227 536
[3] Wiemer M et al 2011 Proc. SPIE 8108 810804
[4] Sellers I R et al 2011 Appl. Phys. Lett. 99 151111
[5] Kong X et al 2005 Appl. Phys. Lett. 87 171901
[6] Alexander G et al 2014 Nanoscale Res. Lett. 9 80
[7] Miyamoto T et al 1998 J. Cryst. Growth 195 421
[8] Aeberhard U 2011 Nanoscale Res. Lett. 6 242
[9] Courel M et al 2012 Appl. Phys. Lett. 100 073508
[10] Hong Y G et al 2002 J. Vac. Sci. Technol. B 20 1163
[11] Okada Y et al 2006 Photovoltaic Energy Conversion Conf. Record 2006 IEEE 4th World Conference (Waikoloa, 7–12 May 2006) 1 865
[12] Wu P H et al 2007 Semicond. Sci. Technol. 22 549
[13] Zhou W, Yang J, Xia S J, Li X and Tang W 2011 Chin. Phys. Lett. 28 117801
[14] Kim T W, Garrod T J, Kim K, Lee J J, LaLumondiere D S, Sin Y, Lotshaw W T, Moss C S, Kuech F T, Tatavarti R and Mawst J L 2012 Appl. Phys. Lett. 100 121120
[15] Wang N M, Zheng X H, Chen X, Gan X Y, Wang H X and Yang H 2015 Sci. Sin.-Phys. Mech. Astron. 45 (accepted) (in Chinese)
[16] Nakajima F, Sanorpim S, Yamamoto T, Takuma E, Katayama R, Ichinose H, Onabe K and Shiraki Y 2010 Phys. Status Solidi C 7 2778
[17] Ng T K, Yoon S F, Wang S Z, Loke W K and Fan W J 2001 MRS Proc. 693 I6.4.1
[18] Xin H P, Kavanagh K L Zhu Z Q and Tu C W 1999 Appl. Phys. Lett. 74 2337
[19] Largeau L, Bondoux C, Patriarche G, Asplund C, Fujioka A, Salomonsson F and Hammar M 2001 Appl. Phys. Lett. 79 1795
[20] Aho A, Poloj?rvi V, Korpij?rvi V M, Salmi J, Tukiainen A, Laukkanen P and Guina M 2014 Sol. Energy Mater. Sol. Cells 124 150
[21] Jackrel D B, Bank S R, Yuen H B, Wistey M A, Harris Jr J S, Ptak A J, Johnston S W, Friedman D J and Kurtz S R 2007 J. Appl. Phys. 101 114916
[22] Wu T H, Su Y K, Lin Y C and Wang Y J 2011 Jpn. J. Appl. Phys. 50 01AD07
[23] Ng T K, Yoon S F, Tan K H, Loke W K, Wicaksono S, Lew K L, Chen K P, Fitzgerald E A, Pitera A J, Ringel S A, Carlin A M and Gonzalez M 2009 IEEE 34th PVSCI (Philadelphia, 7–12 June 2009) p 000076
[24] Watanabe K, Wang Y, Sodabanlu H, Sugiyama M and Nakano Y 2013 AIP Conf. Proc. CPV9 (Miyazaki, 15–17 April 2013) 1556 62
Related articles from Frontiers Journals
[1] Chaofei Liu and Jian Wang. Spectroscopic Evidence for Electron Correlations in Epitaxial Bilayer Graphene with Interface-Reconstructed Superlattice Potentials[J]. Chin. Phys. Lett., 2022, 39(7): 057301
[2] Xiao-Feng Li, Ruo-Xuan Sun, Su-Yun Wang, Xiao Li, Zhi-Bo Liu, and Jian-Guo Tian. Recent Advances in Moiré Superlattice Structures of Twisted Bilayer and Multilayer Graphene[J]. Chin. Phys. Lett., 2022, 39(3): 057301
[3] Xu Zhang, Gaopei Pan, Yi Zhang, Jian Kang, and Zi Yang Meng. Momentum Space Quantum Monte Carlo on Twisted Bilayer Graphene[J]. Chin. Phys. Lett., 2021, 38(7): 057301
[4] Changyuan Zhou , Dezhi Song , Yeping Jiang, and Jun Zhang . Modification of the Hybridization Gap by Twisted Stacking of Quintuple Layers in a Three-Dimensional Topological Insulator Thin Film[J]. Chin. Phys. Lett., 2021, 38(5): 057301
[5] Yu-Hao Shen, Wen-Yi Tong, He Hu, Jun-Ding Zheng, and Chun-Gang Duan. Exotic Dielectric Behaviors Induced by Pseudo-Spin Texture in Magnetic Twisted Bilayer[J]. Chin. Phys. Lett., 2021, 38(3): 057301
[6] Da-Hong Su, Yun Xu, Wen-Xin Wang, Guo-Feng Song. Growth Control of High-Performance InAs/GaSb Type-II Superlattices via Optimizing the In/Ga Beam-Equivalent Pressure Ratio[J]. Chin. Phys. Lett., 2020, 37(3): 057301
[7] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 057301
[8] Xi-xia Tao, Chun-lan Mo, Jun-lin Liu, Jian-li Zhang, Xiao-lan Wang, Xiao-ming Wu, Long-quan Xu, Jie Ding, Guang-xu Wang, Feng-yi Jiang. Electroluminescence from the InGaN/GaN Superlattices Interlayer of Yellow LEDs with Large V-Pits Grown on Si (111)[J]. Chin. Phys. Lett., 2018, 35(5): 057301
[9] Wei-Jing Qi, Long-Quan Xu, Chun-Lan Mo, Xiao-Lan Wang, Jie Ding, Guang-Xu Wang, Shuan Pan, Jian-Li Zhang, Xiao-Ming Wu, Jun-Lin Liu, Feng-Yi Jiang. The Efficiency Droop of InGaN-Based Green LEDs with Different Superlattice Growth Temperatures on Si Substrates via Temperature-Dependent Electroluminescence[J]. Chin. Phys. Lett., 2017, 34(7): 057301
[10] Solaimani M.. Miniband Formation in GaN/AlN Constant-Total-Effective-Radius Multi-shell Quantum Dots[J]. Chin. Phys. Lett., 2015, 32(11): 057301
[11] HAO Hong-Yue, XIANG Wei, WANG Guo-Wei, XU Ying-Qiang, REN Zheng-Wei, HAN Xi, HE Zhen-Hong, LIAO Yong-Ping, WEI Si-Hang, NIU Zhi-Chuan. Wet Chemical Etching of Antimonide-Based Infrared Materials[J]. Chin. Phys. Lett., 2015, 32(10): 057301
[12] ZHANG Hui-Yun, ZHANG Yu-Ping, GAO Ying, YIN Yi-Heng. Independently Tunable Multichannel Filters Based on Graphene Superlattices with Fractal Potential Patterns[J]. Chin. Phys. Lett., 2012, 29(12): 057301
[13] WANG Guo-Wei, XU Ying-Qiang, GUO Jie, TANG Bao, REN Zheng-Wei, HE Zhen-Hong, NIU Zhi-Chuan. Growth and Characterization of GaSb-Based Type-II InAs/GaSb Superlattice Photodiodes for Mid-Infrared Detection[J]. Chin. Phys. Lett., 2010, 27(7): 057301
[14] HUO Qiu-Hong, WANG Ru-Zhi, CHEN Si-Ying, XUE Kun, YAN Hui. Spin Transport in a Magnetic Superlattice with Broken Two-Fold Symmetry[J]. Chin. Phys. Lett., 2010, 27(6): 057301
[15] LU Shuo, SHANG Jia-Xiang, ZHANG Yue. Influence of Interface Structure of Co/Cu (100) Superlattices on Electronic Structure and Giant Magnetoresistance[J]. Chin. Phys. Lett., 2007, 24(11): 057301
Viewed
Full text


Abstract