CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Room-Temperature Annealing of 1 MeV Electron Irradiated Lattice Matched In0.53Ga0.47As/InP Multiple Quantum Wells |
WANG Hai-Jiao1,2,3, LI Yu-Dong1,2**, GUO Qi1,2, MA Li-Ya1,2,3, WEN Lin1,2, WANG Bo1,2,3 |
1Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011 2Xinjiang Key Laboratory of Electronic Information Materials and Devices, Urumqi 830011 3University of Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
WANG Hai-Jiao, LI Yu-Dong, GUO Qi et al 2015 Chin. Phys. Lett. 32 056102 |
|
|
Abstract Long-term room-temperature annealing effects of InGaAs/InP quantum wells with different wells (namely triple wells and five wells embedded) and bulk InGaAs are investigated after high energy electron irradiation. It is observed that the photoluminescence (PL) intensity of bulk InGaAs materials is enhanced after low dose electron irradiation and the PL intensity for all the three samples is degraded dramatically when the electron dose is relatively high. With respect to the room-temperature annealing, we find that the PL intensity for both samples recovers relatively fast at the initial stage. The PL performance of multiple quantum-well samples shows better recovery after irradiation compared with the results of bulk InGaAs materials. Meanwhile, the recovery speed factors of multiple quantum-well samples are relatively faster than those of the bulk InGaAs materials as well. We infer that the recovery difference between the quantum-well materials and bulk materials originates from the fact that the radiation induced defects are confined in the quantum wells as a consequence of the free energy barrier between the In0.53Ga0.47As wells and InP barrier layers.
|
|
Received: 25 November 2014
Published: 01 June 2015
|
|
PACS: |
61.80.-x
|
(Physical radiation effects, radiation damage)
|
|
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
78.67.De
|
(Quantum wells)
|
|
|
|
|
[1] Ding K and Ning C Z 2012 Light: Sci. Appl. 1 e20 [2] Hadfield R H 2009 Nat. Photon. 3 696 [3] Sun H, Nolte D D, Hyland J and Harmon E 2013 Opt. Lett. 38 2792 [4] Arslan Y, Colakoglu T and Besikci C 2013 IEEE J. Quantum Electron. 49 186 [5] Barde S, Ecoffet R and Costeraste J 2000 IEEE Trans. Nucl. Sci. 47 2466 [6] Dao L V, Johnston M B and Gal M 1998 Appl. Phys. Lett. 73 3408 [7] Gunapala S D, Levine B F and Ritter D 1991 Appl. Phys. Lett. 58 2024 [8] Xu S J, Chua S J and Mei T 1998 Appl. Phys. Lett. 73 3153 [9] Gilbreath G C, Rabinovich W S and Meehan T J 2001 Opt. Eng. 40 1348 [10] Hoogeveen R W M, van der A R J and Goede A P H 2001 Infrared Phys. Technol. 42 1 [11] Liang L M, Xie X J and Hao Q Y 2012 Chin. Phys. Lett. 29 097801 [12] Liu C M, Li X J, Geng H B, Yang D Z and He S Y 2012 Chin. Phys. B 21 80703 [13] Ya B S, Jun F and Jun X 2014 Chin. Phys. B 23 116104 [14] Pavelescu E M, Gheorghiu A and Dumitrescu M 2004 Appl. Phys. Lett. 85 6158 [15] Zhou Q, Manasreh M O and Weaver B D 2002 Appl. Phys. Lett. 81 3374 [16] Gareso P L, Buda M and Fu L 2006 Semicond. Sci. Technol. 21 1441 [17] Li S X, Jones R E, Haller E E, Yu K M, Walukiewicz W, Ager J W, Weber Z L, Lu H and Schaf W J 2006 Appl. Phys. Lett. 88 151101 [18] Zhang X F, Li Y D and Guo Q 2013 Chin. Phys. Lett. 30 076102 [19] Manasreh M O, Ballet P and Smathers J B 1999 Appl. Phys. Lett. 75 525 [20] Leon R, Swift G M and Magness B 2000 Appl. Phys. Lett. 76 2074 [21] Marcinkevi?ius S, Leon R and ?echavi?ius B 2002 Physica B 314 203 [22] Aierken A, Guo Q and Huhtio T 2013 Radiat. Phys. Chem. 83 42 [23] Fu L, Tan H H and Johnston M B 1999 J. Appl. Phys. 85 6786 [24] Tan H H and Jagadish C 1997 Appl. Phys. Lett. 71 2680 [25] Manasreh M O, Von Bardeleben H J and Mousalitin A M 1999 J. Appl. Phys. 85 630 [26] Lambkin J D, Dunstan D J and Homewood K P 1990 Appl. Phys. Lett. 57 1986 [27] Johnston A H 2000 The 4th International Workshop on Radiation Effects on Semiconductor Devices for Space Applications ( Tsukuba, Japan 11–13 October 2000) [28] Guffarth F, Heitz R and Geller M 2003 Appl. Phys. Lett. 82 1941 [29] Claeys C and Simoen E 2008 Radiation Effects in Advanced Semiconductor Materials and Devices (Beijing: National Defense Industry Press) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|