Chin. Phys. Lett.  2015, Vol. 32 Issue (5): 056102    DOI: 10.1088/0256-307X/32/5/056102
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Room-Temperature Annealing of 1 MeV Electron Irradiated Lattice Matched In0.53Ga0.47As/InP Multiple Quantum Wells
WANG Hai-Jiao1,2,3, LI Yu-Dong1,2**, GUO Qi1,2, MA Li-Ya1,2,3, WEN Lin1,2, WANG Bo1,2,3
1Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011
2Xinjiang Key Laboratory of Electronic Information Materials and Devices, Urumqi 830011
3University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
WANG Hai-Jiao, LI Yu-Dong, GUO Qi et al  2015 Chin. Phys. Lett. 32 056102
Download: PDF(572KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Long-term room-temperature annealing effects of InGaAs/InP quantum wells with different wells (namely triple wells and five wells embedded) and bulk InGaAs are investigated after high energy electron irradiation. It is observed that the photoluminescence (PL) intensity of bulk InGaAs materials is enhanced after low dose electron irradiation and the PL intensity for all the three samples is degraded dramatically when the electron dose is relatively high. With respect to the room-temperature annealing, we find that the PL intensity for both samples recovers relatively fast at the initial stage. The PL performance of multiple quantum-well samples shows better recovery after irradiation compared with the results of bulk InGaAs materials. Meanwhile, the recovery speed factors of multiple quantum-well samples are relatively faster than those of the bulk InGaAs materials as well. We infer that the recovery difference between the quantum-well materials and bulk materials originates from the fact that the radiation induced defects are confined in the quantum wells as a consequence of the free energy barrier between the In0.53Ga0.47As wells and InP barrier layers.
Received: 25 November 2014      Published: 01 June 2015
PACS:  61.80.-x (Physical radiation effects, radiation damage)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
  78.67.De (Quantum wells)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/5/056102       OR      https://cpl.iphy.ac.cn/Y2015/V32/I5/056102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Hai-Jiao
LI Yu-Dong
GUO Qi
MA Li-Ya
WEN Lin
WANG Bo
[1] Ding K and Ning C Z 2012 Light: Sci. Appl. 1 e20
[2] Hadfield R H 2009 Nat. Photon. 3 696
[3] Sun H, Nolte D D, Hyland J and Harmon E 2013 Opt. Lett. 38 2792
[4] Arslan Y, Colakoglu T and Besikci C 2013 IEEE J. Quantum Electron. 49 186
[5] Barde S, Ecoffet R and Costeraste J 2000 IEEE Trans. Nucl. Sci. 47 2466
[6] Dao L V, Johnston M B and Gal M 1998 Appl. Phys. Lett. 73 3408
[7] Gunapala S D, Levine B F and Ritter D 1991 Appl. Phys. Lett. 58 2024
[8] Xu S J, Chua S J and Mei T 1998 Appl. Phys. Lett. 73 3153
[9] Gilbreath G C, Rabinovich W S and Meehan T J 2001 Opt. Eng. 40 1348
[10] Hoogeveen R W M, van der A R J and Goede A P H 2001 Infrared Phys. Technol. 42 1
[11] Liang L M, Xie X J and Hao Q Y 2012 Chin. Phys. Lett. 29 097801
[12] Liu C M, Li X J, Geng H B, Yang D Z and He S Y 2012 Chin. Phys. B 21 80703
[13] Ya B S, Jun F and Jun X 2014 Chin. Phys. B 23 116104
[14] Pavelescu E M, Gheorghiu A and Dumitrescu M 2004 Appl. Phys. Lett. 85 6158
[15] Zhou Q, Manasreh M O and Weaver B D 2002 Appl. Phys. Lett. 81 3374
[16] Gareso P L, Buda M and Fu L 2006 Semicond. Sci. Technol. 21 1441
[17] Li S X, Jones R E, Haller E E, Yu K M, Walukiewicz W, Ager J W, Weber Z L, Lu H and Schaf W J 2006 Appl. Phys. Lett. 88 151101
[18] Zhang X F, Li Y D and Guo Q 2013 Chin. Phys. Lett. 30 076102
[19] Manasreh M O, Ballet P and Smathers J B 1999 Appl. Phys. Lett. 75 525
[20] Leon R, Swift G M and Magness B 2000 Appl. Phys. Lett. 76 2074
[21] Marcinkevi?ius S, Leon R and ?echavi?ius B 2002 Physica B 314 203
[22] Aierken A, Guo Q and Huhtio T 2013 Radiat. Phys. Chem. 83 42
[23] Fu L, Tan H H and Johnston M B 1999 J. Appl. Phys. 85 6786
[24] Tan H H and Jagadish C 1997 Appl. Phys. Lett. 71 2680
[25] Manasreh M O, Von Bardeleben H J and Mousalitin A M 1999 J. Appl. Phys. 85 630
[26] Lambkin J D, Dunstan D J and Homewood K P 1990 Appl. Phys. Lett. 57 1986
[27] Johnston A H 2000 The 4th International Workshop on Radiation Effects on Semiconductor Devices for Space Applications ( Tsukuba, Japan 11–13 October 2000)
[28] Guffarth F, Heitz R and Geller M 2003 Appl. Phys. Lett. 82 1941
[29] Claeys C and Simoen E 2008 Radiation Effects in Advanced Semiconductor Materials and Devices (Beijing: National Defense Industry Press)
Related articles from Frontiers Journals
[1] Si-Yuan Chen, Xin Yu, Wu Lu, Shuai Yao, Xiao-Long Li, Xin Wang, Mo-Han Liu, Shan-Xue Xi, Li-Bin Wang, Jing Sun, Cheng-Fa He, Qi Guo. Effects of Total-Ionizing-Dose Irradiation on Single-Event Burnout for Commercial Enhancement-Mode AlGaN/GaN High-Electron Mobility Transistors[J]. Chin. Phys. Lett., 2020, 37(4): 056102
[2] Meng-Han Wang, Jun-Le Qu, Ming Zhu. Partially Overlapped Dual Laser Beams to Reduce Ablation Craters[J]. Chin. Phys. Lett., 2020, 37(1): 056102
[3] Yi Wang, Wensheng Lai, Jiahao Li. An Incremental Model for Defect Production upon Cascade Overlapping[J]. Chin. Phys. Lett., 2020, 37(1): 056102
[4] Yan-Nan Xu, Jin-Shun Bi, Gao-Bo Xu, Bo Li, Kai Xi, Ming Liu, Hai-Bin Wang, Li Luo. Total Ionization Dose Effects on Charge Storage Capability of Al$_{2}$O$_{3}$/HfO$_{2}$/Al$_{2}$O$_{3}$-Based Charge Trapping Memory Cell[J]. Chin. Phys. Lett., 2018, 35(11): 056102
[5] Yi-Tao Yang, Chong-Hong Zhang, Chang-Hao Su, Zhao-Nan Ding, Yin Song, Yu-Guang Chen. Aligned Elongation of Ag Nanoparticles Embedded in Silica Irradiated with High Energy Ni Ions[J]. Chin. Phys. Lett., 2018, 35(9): 056102
[6] Chang-Hao Su, Chong-Hong Zhang, Yi-Tao Yang, Zhao-Nan Ding, Yu-Guang Chen, Akihiko Kimura. Hardening of an ODS Ferritic Steel after Helium Implantation and Thermal Annealing[J]. Chin. Phys. Lett., 2018, 35(5): 056102
[7] Pei Li, Chao-Hui He, Gang Guo, Hong-Xia Guo, Feng-Qi Zhang, Jin-Xin Zhang, Shu-Ting Shi. Heavy Ion and Laser Microbeam Induced Current Transients in SiGe Heterojunction Bipolar Transistor[J]. Chin. Phys. Lett., 2017, 34(10): 056102
[8] Meng-Ying Zhang, Zhi-Yuan Hu, Zheng-Xuan Zhang, Shuang Fan, Li-Hua Dai, Xiao-Nian Liu, Lei Song. Total Ionizing Dose Response of Different Length Devices in 0.13μm Partially Depleted Silicon-on-Insulator Technology[J]. Chin. Phys. Lett., 2017, 34(8): 056102
[9] Ning Gao, Fei Gao, Zhi-Guang Wang. Anisotropic Migration of Defects under Strain Effect in BCC Iron[J]. Chin. Phys. Lett., 2017, 34(7): 056102
[10] Ting-Jian Dong, Cui-Hua Rong, Jia-Chang Liang, Bo Liu, Xiao-Yong Zhao, Dong-Yan Chen, Bin Zhang, Hao Wang, Hai-Bo Li, Shi-Gui Zhang, Yu-Ping Jiang, Bing Luo, Xiao-Wen Zhou, Tao Wang, Xiao Yu, Xiao-Yun Le. Hydrodynamic Effects on Surface Morphology Evolution of Titanium Alloy under Intense Pulsed Ion Beam Irradiation[J]. Chin. Phys. Lett., 2017, 34(5): 056102
[11] Dong Wang, Ning Gao, W. Setyawan, R. J. Kurtz, Zhi-Guang Wang, Xing Gao, Wen-Hao He, Li-Long Pang. Effect of Strain Field on Threshold Displacement Energy of Tungsten Studied by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2016, 33(09): 056102
[12] Shehla H., Ali A. Zongo S. Javed I. Ishaq A. Khizar H. Naseem S. Maaza M.. Fabrication of Amorphous Silver Nanowires by Helium Ion Beam Irradiation[J]. Chin. Phys. Lett., 2015, 32(09): 056102
[13] LI Pei, GUO Hong-Xia, GUO Qi, ZHANG Jin-Xin, WEI Ying,. Laser-Induced Single Event Transients in Local Oxidation of Silicon and Deep Trench Isolation Silicon-Germanium Heterojunction Bipolar Transistors[J]. Chin. Phys. Lett., 2015, 32(08): 056102
[14] WANG Kun, QI Qiang, CHENG Gui-Jun, SHI Li-Qun. Microstructure and Mechanical Properties of Ti3SiC2 Irradiated by Carbon Ions[J]. Chin. Phys. Lett., 2014, 31(07): 056102
[15] PENG Chao, ZHANG Zheng-Xuan, HU Zhi-Yuan, HUANG Hui-Xiang, NING Bing-Xu, BI Da-Wei. Enhanced Radiation Sensitivity in Short-Channel Partially Depleted Silicon-on-Insulator n-Type Metal-Oxide-Semiconductor Field Effect Transistors[J]. Chin. Phys. Lett., 2013, 30(9): 056102
Viewed
Full text


Abstract