Chin. Phys. Lett.  2015, Vol. 32 Issue (5): 054210    DOI: 10.1088/0256-307X/32/5/054210
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Temperature-Dependent Fluorescence Properties and Diode-Pumped Deep Red Laser Performance of Pr:LiGdF4 Crystal
ZHANG Yu-Xia1, WANG Shu-Xian1, Alberto Di Lieto2, YU Guo-Lei1,3, YU Hao-Hai1**, ZHANG Huai-Jin1**, Mauro Tonelli2, XU Xian-Gang1, WANG Ji-Yang1
1State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100
2NEST Istituto Nanoscienze-CNR and Dipartimento di Fisica dell'Università di Pisa, Largo B. Pontecorvo 3, Pisa 56127, Italy
3Inspur Huaguang Optoelectronics Co., Ltd, Jinan 250101
Cite this article:   
ZHANG Yu-Xia, WANG Shu-Xian, Alberto Di Lieto et al  2015 Chin. Phys. Lett. 32 054210
Download: PDF(640KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate the temperature-dependent fluorescence properties of Pr:LiGdF4 crystal for the first time, to the best of our knowledge, and its blue diode pumped cw red laser at 720 nm at room temperature. The fluorescence lifetime and polarized emission cross sections in the visible range are measured and calculated in a temperature range from 77 K to 300 K, and the variations of the fluorescence lifetime and spectra are discovered. The reasons for these changes are explained accordingly. The output wavelength of the 720 nm laser is first reported on the laser performance by using a fiber-coupled laser diode at the wavelength of 442 nm as the pump source, and the maximum cw output power is about 303 mW.
Received: 25 November 2014      Published: 01 June 2015
PACS:  42.55.-f (Lasers)  
  42.55.Xi (Diode-pumped lasers)  
  42.70.Hj (Laser materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/5/054210       OR      https://cpl.iphy.ac.cn/Y2015/V32/I5/054210
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Yu-Xia
WANG Shu-Xian
Alberto Di Lieto
YU Guo-Lei
YU Hao-Hai
ZHANG Huai-Jin
Mauro Tonelli
XU Xian-Gang
WANG Ji-Yang
[1] Gün T, Metz P and Huber G 2011 Appl. Phys. Lett. 99 181103
[2] Huber G, Kr?nkel C and Petermann K 2010 J. Opt. Soc. Am. B 27 B93
[3] Sandrock T, Danger T, Heumann E, Huber G and Chai B H T 1994 Appl. Phys. B 58 149
[4] Buchter S C and Jenssen H P 1998 Adv. Solid State Lasers 19 34
[5] Merkle L D, Zandi B, Moncorgé R, Guyot Y, Verdunand H R and McIntosh B 1996 J. Appl. Phys. 79 1849
[6] Richter A, Heumann E, Osiac E, Huber G, Seelert W and Diening A 2004 Opt. Lett. 29 2638
[7] Hegarty J, Huber D L and Yen W M 1982 Phys. Rev. B 25 5638
[8] Cornacchia F, Lieto A Di, Tonelli M, Richter A, Heumann E and Huber G 2008 Opt. Express 16 15932
[9] Seletskiy D V, Melgaard S D, Bigotta S, Lieto A Di, Tonelli M and Sheik B M 2010 Nat. Photon. 4 161
[10] Paboeuf D, Mhibik O, Bretenaker F, Goldner P, Parisi D and Tonelli M 2011 Opt. Lett. 36 280
[11] Basiev T T, Konyushkin V A, Konyushkin D V, Doroshenko M E, Huber G, Reichert F, Hansen N O and Fechner M 2011 Opt. Mater. Express 1 1511
[12] Reichert F, Moglia F, Marzahl D T, Metz P, Fechner, Hansen N O and Huber G 2012 Opt. Express 20 20387
[13] Koechner W 2006 Solid-State Laser Engineering (Berlin: Springer)
[14] Renfro G M, Windscheif J C, Sibley W A and Belt R F 1980 J. Lumin. 22 51
[15] Ding X, Li X, Sheng Q, Shi C P, Yin S J, Li B, Yu X Y, Wen W Q and Yao J Q 2011 Chin. Phys. Lett. 28 094205
[16] Wang T, Li Y X, Yao J Q, Guo L, Wang Z, Han S S, Zhang C Y and Zhong K 2013 Chin. Phys. Lett. 30 064203
[17] ?zen G, Forte O and Bartolo B Di 2005 J. Appl. Phys. 97 013510
[18] Zhao Y G, Yu H H, Wang Z P, Zhang H J, Xu X G and Wang J Y 2013 J. Opt. Soc. Am. B 30 1241
[19] Kohei H and Fumihiko K 2007 Opt. Lett. 32 2493
[20] Adam J L and Sibley W A 1985 J. Lumin. 33 391
[21] Richter A 2008 Laser Parameters and Performance of Pr3+-doped Fluorides Operating in the Visible Spectral Region (Gottingen: Cuvillier Verlag)
[22] Done C De M, Meijerink A and Blassé G 1995 J. Phys. Chem. Solids 56 673
[23] Weber M 1973 Phys. Rev. B 8 54
[24] Ellens, Andres H, Heerdt M L H ter, Wegh R T, Meijerink A and Blasse G 1997 Phys. Rev. B 55 180
[25] Aull B F and Jenssen H P 1982 IEEE J. Quantum Electron. 18 925
[26] Barnes N P and Gettemy D J 1980 J. Opt. Soc. Am. 70 1244
[27] Mermilliod N, Romero R, Chartier I, Garapon C and Moncorgé R 1992 IEEE J. Quantum Electron. 28 1179
[28] Danger T, Sandrock T, Heumann E, Huber G and Chai B 1993 Appl. Phys. B 57 239
[29] Cho C Y, Huang T L, Wen S M, Huang Y J, Huang K F and Chen Y F 2014 Opt. Express 22 25318
Related articles from Frontiers Journals
[1] Gangyi Zhu, Mufei Tian, M. Almokhtar, Feifei Qin, Binghui Li, Mengyao Zhou, Fei Gao, Ying Yang, Xin Ji, Siqing He, and Yongjin Wang. Whispering Gallery Mode Lasing Performance's Evolution of Floating GaN Microdisks Varying with Their Thickness[J]. Chin. Phys. Lett., 2022, 39(12): 054210
[2] Jianping Shen, Xin Huang, Songtao Jiang, Rongrong Jiang, Huiyin Wang, Peng Lu, Shaocong Xu, and Mingyu Jiao. Design and Development of a High-Performance LED-Side-Pumped Nd:YAG Rod Laser[J]. Chin. Phys. Lett., 2022, 39(10): 054210
[3] Xin Ni, Kunpeng Jia, Xiaohan Wang, Huaying Liu, Jian Guo, Shu-Wei Huang, Baicheng Yao, Nicolò Sernicola, Zhenlin Wang, Xinjie Lv, Gang Zhao, Zhenda Xie, and Shi-Ning Zhu. Broadband Sheet Parametric Oscillator for $\chi^{(2)}$ Optical Frequency Comb Generation via Cavity Phase Matching[J]. Chin. Phys. Lett., 2021, 38(6): 054210
[4] Jian-Wang Jiang, Shao-Bo Fang, Zi-Yue Zhang, Jiang-Feng Zhu, Hai-Nian Han, Guo-Qing Chang, Zhi-Yi Wei. Monolithic 0–f Scheme-Based Frequency Comb Directly Driven by a High-Power Ti:Sapphire Oscillator[J]. Chin. Phys. Lett., 2020, 37(5): 054210
[5] Fang-Jin Ning, Zhi-Yong Li, Rong-Qing Tan, Lie-Mao Hu, Song-Yang Liu. Diode Pumped Rubidium Laser Based on Etalon Effects of Alkali Cell Windows[J]. Chin. Phys. Lett., 2020, 37(3): 054210
[6] Qiu-Run He, Jing Guo, Bao-Fu Zhang, Zhong-Xing Jiao. High-Repetition-Rate and High-Beam-Quality Laser Pulses with 1.5MW Peak Power Generation from a Two-Stage Nd:YVO$_{4}$ Amplifier[J]. Chin. Phys. Lett., 2019, 36(11): 054210
[7] H. Ahmad, M. F. Ismail, S. N. Aidit. Optically Modulated Tunable O-Band Praseodymium-Doped Fluoride Fiber Laser Utilizing Multi-Walled Carbon Nanotube Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(10): 054210
[8] Li-Jiao He, Ke Liu, Nan Zong, Zhao Liu, Zhi-Min Wang, Yong Bo, Xiao-Jun Wang, Qin-Jun Peng, Da-Fu Cui, Zu-Yan Xu. A High Conversion Efficiency Q-Switched Intracavity Nd:YVO$_{4}$/KTA Optical Parametric Oscillator under Direct Diode Pumping at 880nm[J]. Chin. Phys. Lett., 2019, 36(4): 054210
[9] Wei Zhang, Zhi Wei, Yi-Bin Wang, Guang-Yong Jin. The Process of a Laser-Supported Combustion Wave Induced by Millisecond Pulsed Laser on Aluminum Alloy[J]. Chin. Phys. Lett., 2016, 33(01): 054210
[10] LIU Yang, LIU Zhao-Jun, CONG Zhen-Hua, MEN Shao-Jie, XIA Jin-Bao, RAO Han, ZHANG Sa-Sa. Efficient Diode-End-Pumped Actively Q-Switched Nd:YLF/SrWO4 Raman Laser[J]. Chin. Phys. Lett., 2015, 32(12): 054210
[11] MAO Ye-Fei, ZHANG Heng-Li, SANG Si-Han, ZHANG Xin, YU Xi-Long, XING Ji-Chuan, XIN Jian-Guo, JIANG Yi. High-Power Continuous-Wave Nd:GdVO4 Solid-State Laser Dual-End-Pumped at 880 nm[J]. Chin. Phys. Lett., 2015, 32(09): 054210
[12] ZENG Xiang-Mei. Focusing Properties of Partially Coherent Controllable Dark-Hollow Beams through a Thin Lens[J]. Chin. Phys. Lett., 2015, 32(07): 054210
[13] ZHUANG Wei, ZHANG Tong-Gang, CHEN Jing-Biao. An Active Ion Optical Clock[J]. Chin. Phys. Lett., 2014, 31(09): 054210
[14] MAO Ye-Fei, ZHANG Heng-Li, XU Liu, DENG Bo, XING Ji-Chuan, XIN Jian-Guo, JIANG Yi. An 880-nm Laser-Diode End-Pumped Nd:YVO4 Slab Laser with a Hybrid Resonator[J]. Chin. Phys. Lett., 2014, 31(07): 054210
[15] JIN Guang-Yong, WU Chun-Ting, CHEN Xin-Yu, YU Yong-Ji, WANG Chao. An Innovative Electro-Optic Q-Switch Technology in 1064 nm and 1319 nm Dual-Wavelength Operation of a Nd:YAG Laser[J]. Chin. Phys. Lett., 2013, 30(3): 054210
Viewed
Full text


Abstract