Chin. Phys. Lett.  2015, Vol. 32 Issue (5): 053401    DOI: 10.1088/0256-307X/32/5/053401
ATOMIC AND MOLECULAR PHYSICS |
All-Optical Production of Quantum Degeneracy and Molecular Bose–Einstein Condensation of 6Li
DENG Shu-Jin, DIAO Peng-Peng, YU Qian-Li, WU Hai-Bin**
State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062
Cite this article:   
DENG Shu-Jin, DIAO Peng-Peng, YU Qian-Li et al  2015 Chin. Phys. Lett. 32 053401
Download: PDF(630KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We achieve a highly degenerate and strongly interacting Fermi gas in a mixture of the two lowest hyperfine states of 6Li by direct evaporative cooling in a high power crossed optical dipole trap. The trap is loaded from a large atom number magneto-optical trap realized by a laser system of 2.5-W intracavity-frequency-doubled light output at 671 nm. With this system, we also demonstrate the production of a molecular Bose–Einstein condensate (mBEC) of 6Li2, and observe the anisotropic expansion of Fermi gases in the so-called BEC–Bardeen–Cooper–Schrieffer crossover regime.
Received: 19 January 2015      Published: 01 June 2015
PACS:  03.75.Ss (Degenerate Fermi gases)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/5/053401       OR      https://cpl.iphy.ac.cn/Y2015/V32/I5/053401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DENG Shu-Jin
DIAO Peng-Peng
YU Qian-Li
WU Hai-Bin
[1] Bloch I and Zwerger W 2008 Rev. Mod. Phys. 80 885
[2] Giorgini S and Stringari S 2008 Rev. Mod. Phys. 80 1215
[3] Thomas J and Gehm M 2004 Am. Sci. 92 238
[4] Zwerger W 2011 BCS-BEC Crossover Unitary Fermi Gas 836 (New York: Springer)
[5] O'Hara K, Hemmer S, Gehm M, Granade S and Thomas J 2002 Science 298 2179
[6] O'Hara K, Gehm M, Granade S and Thomas J 2001 Phys. Rev. A 64 051403
[7] Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S, Chin C, Denschlag J and Grimm R 2003 Science 302 2101
[8] Cao C, Elliott E, Wu H and Thomas J 2011 New J. Phys. 13 075007
[9] Nascimbene S, Navon N, Jiang K, Chevy F and Salomon C 2010 Nature 463 1057
[10] Hu H, Liu X and Drummond P 2010 New J. Phys. 12 063038
[11] Thomas J, Kinast J and Turlapov A 2005 Phys. Rev. Lett. 95 120402
[12] Carr L, Bourdel T and Castin Y 2004 Phys. Rev. A 69 033603
[13] Greiner M, Regal C and Jin D 2003 Nature 426 537
[14] Zwierlein M, Stan C, Schunck C, Raupach S, Gupta S, Hadzibabic Z and Ketterle W 2003 Phys. Rev. Lett. 91 250401
[15] Bourdel T, Khaykovich L, Cubizolles J, Zhang J, Chevy F, Teichmann M, Tarruell L, Kokkelmans S and Salomon C 2004 Phys. Rev. Lett. 93 250401
[16] Partridge G, Strecker K, Kamar R, Jack M and Hulet R 2005 Phys. Rev. Lett. 95 020404
[17] Petrov D, Salomon C and Shlyapnikov G 2004 Phys. Rev. Lett. 93 090404
[18] Cao C, Elliott E, Joseph J, Wu H, Petricka J, Schafer T and Thomas J 2011 Science 331 58
[19] Joseph E and Thomas E 2014 Phys. Rev. Lett. 112 040405
Related articles from Frontiers Journals
[1] Xiang-Chuan Yan, Da-Li Sun, Lu Wang, Jing Min, Shi-Guo Peng, and Kai-Jun Jiang. Production of Degenerate Fermi Gases of $^6$Li Atoms in an Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(5): 053401
[2] Jing-Bo Wang, Jian-Song Pan, Xiaoling Cui, and Wei Yi. Quantum Droplets in a Mixture of Bose–Fermi Superfluids[J]. Chin. Phys. Lett., 2020, 37(7): 053401
[3] Qijin Chen, Jibiao Wang, Lin Sun, Yi Yu. Unusual Destruction and Enhancement of Superfluidity of Atomic Fermi Gases by Population Imbalance in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2020, 37(5): 053401
[4] Xue-Jing Feng, Lan Yin. Phase Diagram of a Spin-Orbit Coupled Dipolar Fermi Gas at T=0K[J]. Chin. Phys. Lett., 2020, 37(2): 053401
[5] Ya-Dong Song, Xiao-Ming Cai. Properties of One-Dimensional Highly Polarized Fermi Gases[J]. Chin. Phys. Lett., 2018, 35(11): 053401
[6] Yi-Cong Yu, Xi-Wen Guan. A Unified Approach to the Thermodynamics and Quantum Scaling Functions of One-Dimensional Strongly Attractive $SU(w)$ Fermi Gases[J]. Chin. Phys. Lett., 2017, 34(7): 053401
[7] Xiao-Xia Ruan, Hao Gong, Yuan-Mei Shi , Hong-Shi Zong. Specific Heat of a Unitary Fermi Gas Including Particle-Hole Fluctuation[J]. Chin. Phys. Lett., 2016, 33(11): 053401
[8] Bei-Bing Huang. A Realistic Model for Observing Spin-Balanced Fulde–Ferrell Superfluid in Honeycomb Lattices[J]. Chin. Phys. Lett., 2016, 33(08): 053401
[9] CHEN Ke-Ji, ZHANG Wei. Nematic Ferromagnetism on the Lieb Lattice[J]. Chin. Phys. Lett., 2014, 31(11): 053401
[10] LUAN Tian, JIA Tao, CHEN Xu-Zong, MA Zhao-Yuan. Optimized Degenerate Bose–Fermi Mixture in Microgravity: DSMC Simulation of Sympathetic Cooling[J]. Chin. Phys. Lett., 2014, 31(04): 053401
[11] RUAN Xiao-Xia, GONG Hao, DU Long, JIANG Yu, SUN Wei-Min, ZONG Hong-Shi. Radio-Frequency Spectra of Ultracold Fermi Gases Including a Generalized GMB Approximation at Unitarity[J]. Chin. Phys. Lett., 2013, 30(11): 053401
[12] QI Xiu-Ying, ZHANG Ai-Xia, XUE Ju-Kui. Dynamics of Dark Solitons in Superfluid Fermi Gases[J]. Chin. Phys. Lett., 2013, 30(11): 053401
[13] WANG Ya-Hui, and MA Zhong-Qi. Ground State Energy of 1D Attractive δ-Function Interacting Fermi Gas[J]. Chin. Phys. Lett., 2012, 29(8): 053401
[14] TIE Lu, XUE Ju-Kui. The Anisotropy of Dipolar Condensate in One-Dimensional Optical Lattices[J]. Chin. Phys. Lett., 2012, 29(2): 053401
[15] YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas[J]. Chin. Phys. Lett., 2010, 27(8): 053401
Viewed
Full text


Abstract