GENERAL |
|
|
|
|
Spectrum of the Open Asymmetric Simple Exclusion Process with Arbitrary Boundary Parameters |
WEN Fa-Kai1, YANG Zhan-Ying1**, CUI Shuai3, CAO Jun-Peng3, YANG Wen-Li2** |
1School of Physics, Northwest University, Xi'an 710069 2Institute of Modern Physics, Northwest University, Xi'an 710069 3Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
|
|
Cite this article: |
WEN Fa-Kai, YANG Zhan-Ying, CUI Shuai et al 2015 Chin. Phys. Lett. 32 050503 |
|
|
Abstract We study the one-dimensional asymmetric simple exclusion process (ASEP) with generic open boundaries (including current-counting deformation), and obtain the exact solutions of this ASEP via the off-diagonal Bethe ansatz method. In particular, numerical results for the small size asymmetric simple exclusion process indicate that the spectrum obtained by the Bethe ansatz equations is complete. Moreover, we present the eigenvalue of the totally asymmetric exclusion process and the corresponding Bethe ansatz equations.
|
|
Received: 22 January 2015
Published: 01 June 2015
|
|
PACS: |
05.70.Ln
|
(Nonequilibrium and irreversible thermodynamics)
|
|
02.50.Ey
|
(Stochastic processes)
|
|
75.10.Lp
|
(Band and itinerant models)
|
|
|
|
|
[1] De Gier J and Essler F H L 2005 Phys. Rev. Lett. 95 240601 [2] Derrida B 2007 J. Stat. Mech. 2007 P07023 [3] Sellitto M 2008 Phys. Rev. Lett. 101 048301 [4] Jiang R, Wang Y Q, Kolomeisky A B, Huang W, Hu M B and Wu Q S 2013 Phys. Rev. E 87 012107 [5] MacDonald C T, Gibbs J H and Pipkin A C 1968 Biopolymers 6 1 [6] Ciandrini L, Stansfield I and Romano M C 2010 Phys. Rev. E 81 051904 [7] Gorissen M, Lazarescu A, Mallick K and Vanderzande C 2012 Phys. Rev. Lett. 109 170601 [8] Neri I, Kern N and Parmeggiani A 2011 Phys. Rev. Lett. 107 068702 [9] Raguin A, Parmeggiani A and Kern N 2013 Phys. Rev. E 88 042104 [10] Huang D W 2005 Phys. Rev. E 72 016102 [11] Li S D, Liu M Z and Pei X J 2013 Chin. Phys. B 22 060512 [12] Popkov V, Salerno M and Schütz G M 2008 Phys. Rev. E 78 011122 [13] Sandow S 1994 Phys. Rev. E 50 2660 [14] Prolhac S 2010 J. Phys. A: Math. Theor. 43 105002 [15] de Gier J and Essler F H L 2011 Phys. Rev. Lett. 107 010602 [16] Cao J, Yang W L, Shi K and Wang Y 2013 Nucl. Phys. B 875 152 [17] Cao J, Yang W L, Shi K and Wang Y 2013 Phys. Rev. Lett. 111 137201 [18] Jiang Y, Cui S, Cao J, Yang W L and Wang Y 2013 arXiv:1309.6456 [hep-ph] [19] Li Y Y, Cao J, Yang W L, Shi K and Wang Y 2014 Nucl. Phys. B 879 98 [20] Zhang X, Cao J, Yang W L, Shi K and Wang Y 2014 J. Stat. Mech. 2014 P04031 [21] Hao K, Cao J, Li G L, Yang W L, Shi K and Wang Y 2014 J. High Energy Phys. 146 128 [22] de Gier J and Essler F H L 2006 J. Stat. Mech. 2006 P12011 [23] Crampe N 2015 J. Phys. A: Math. Gen. 48 08FT01 [24] Lebowitz J L and Spohn H 1999 J. Stat. Phys. 95 333 [25] Essler F H L and Rittenberg V 1996 J. Phys. A: Math. Gen. 29 3375 [26] Lazarescu A and Pasquier V 2014 J. Phys. A: Math. Gen. 47 295202 [27] Cao J, Cui S, Yang W L, Shi K and Wang Y 2015 J. High Energy Phys. 1502 036 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|