Chin. Phys. Lett.  2015, Vol. 32 Issue (5): 050501    DOI: 10.1088/0256-307X/32/5/050501
GENERAL |
Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations
JI Quan-Bao1, ZHOU Yi1, YANG Zhuo-Qin2, MENG Xiang-Ying3**
1School of Mathematics and Computational Science, Huainan Normal University, Huainan 232038
2School of Mathematics and Systems Science and LMIB, Beihang University, Beijing 100191
3Department of Biology, University of Maryland, College Park, Maryland 20742, USA
Cite this article:   
JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin et al  2015 Chin. Phys. Lett. 32 050501
Download: PDF(709KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The contribution of this work is the modification of a mathematical model for bursting Ca2+ oscillations by introducing the proportion of receptors not inactivated by Ca2+ as a new variable. Generation mechanisms of different oscillatory patterns in this modified model are investigated and classified, based on fast/slow dynamical analysis. It is shown that periodic oscillations appear around the original chaotic regions. Moreover, two new types of oscillatory phenomena are observed at the sustaining region. The results may be instructive for understanding the difference between direct observation of dynamical behavior in real cells and theoretical explanations under a variety of stimulus conditions.
Received: 04 December 2014      Published: 01 June 2015
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  82.40.Bj (Oscillations, chaos, and bifurcations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/5/050501       OR      https://cpl.iphy.ac.cn/Y2015/V32/I5/050501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JI Quan-Bao
ZHOU Yi
YANG Zhuo-Qin
MENG Xiang-Ying
[1] Berridge M J, Bootman M D and Lipp P 1998 Nature 395 645
[2] Matrosov V V and Kazantsev V 2011 Chaos 21 023103
[3] Domijan M, Murray R and Sneyd J 2006 J. Nonlinear Sci. 16 483
[4] Kashir J, Jones C and Coward K 2012 Adv. Exp. Med. Biol. 740 1095
[5] Izhikevich E M 2000 Int. J. Bifurcation Chaos Appl. Sci. Eng. 10 1171
[6] Perc M and Marhl M 2003 Chaos Solitons Fractals 18 759
[7] Borghans J A M, Dupont G and Goldbeter A 1997 Biophys. Chem. 66 25
[8] Zhang F, Lu Q S and Su J Z 2009 Chaos Solitons Fractals 41 2285
[9] Ji Q B and Lu Y 2013 Int. J. Bifurcation Chaos Appl. Sci. Eng. 23 1350033
[10] Zhang F, Lu Q S and Duan L X 2007 Chin. Phys. Lett. 24 3344
[11] Meng P and Lu Q S 2010 Chin. Phys. Lett. 27 010502
[12] Gu H G, Pan B B and Xu J 2014 Europhys. Lett. 106 50003
[13] Li X H and Bi Q S 2013 Chin. Phys. Lett. 30 070503
[14] Li X H and Bi Q S 2013 Chin. Phys. Lett. 30 010503
[15] Wu X B, Mo J, Yang M H, Zheng Q H, Gu H G and Ren W 2008 Chin. Phys. Lett. 25 2799
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 050501
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 050501
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 050501
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 050501
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 050501
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 050501
[7] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 050501
[8] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 050501
[9] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 050501
[10] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 050501
[11] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 050501
[12] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 050501
[13] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 050501
[14] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 050501
[15] TAO Yu-Cheng, CUI Ming-Zhu, LI Hai-Hong, YANG Jun-Zhong. Collective Dynamics for Network-Organized Identical Excitable Nodes[J]. Chin. Phys. Lett., 2015, 32(02): 050501
Viewed
Full text


Abstract