Chin. Phys. Lett.  2015, Vol. 32 Issue (5): 050401    DOI: 10.1088/0256-307X/32/5/050401
GENERAL |
Scattering of Scalar Wave by Extended Black Hole in f(R) Gravity
LIAO Ping, ZHANG Ruan-Jing, CHEN Ju-Hua**, WANG Yong-Jiu
College of Physics and Information Science, Hunan Normal University, Changsha 410081
Cite this article:   
LIAO Ping, ZHANG Ruan-Jing, CHEN Ju-Hua et al  2015 Chin. Phys. Lett. 32 050401
Download: PDF(611KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We analyze the Schr?dinger-type scalar wave equation of an extended black hole in f(R) gravity, and numerically investigate its absorption/scattering cross sections using the partial wave method. It is found that the dimension of length α makes the peak value of the effective scattering potential fall down, and the absorption cross section oscillates around the geometric optical value in the high frequency regime. We can also see that the scattering flux becomes stronger and its angle width becomes narrower in the forward direction, the glory peak becomes lower and the glory width becomes narrower along the backward direction when the coupling parameter α increases.
Received: 27 November 2014      Published: 01 June 2015
PACS:  04.70.-s (Physics of black holes)  
  04.40.-b (Self-gravitating systems; continuous media and classical fields in curved spacetime)  
  04.50.Gh (Higher-dimensional black holes, black strings, and related objects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/5/050401       OR      https://cpl.iphy.ac.cn/Y2015/V32/I5/050401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIAO Ping
ZHANG Ruan-Jing
CHEN Ju-Hua
WANG Yong-Jiu
[1] Sánchez N 1977 Phys. Rev. D 16 937
[2] Sánchez N 1978 Phys. Rev. D 18 1030
[3] Porto R A 2008 Phys. Rev. D 77 064026
[4] Unruh W G 1976 Phys. Rev. D 14 3251
[5] Rogatko M and Szyplowska A 2009 Phys. Rev. D 79 104005
[6] Crispino L C B, Oliveira E S, Higuchi A and Matsas G E A 2007 Phys. Rev. D 75 104012
[7] Oliveira E S, Dolan S and Crispino L C B 2010 Phys. Rev. D 81 124013
[8] Crispino L C B, Oliveira E S and Matras G E A 2007 Phys. Rev. D 76 107502
[9] Crispino L C B and Olivera E S 2008 Phys. Rev. D 78 024011
[10] Macedo C F B, Leite L C S, Oliveira E S, Dolan S R and Crispino L C B 2013 Phys. Rev. D 88 064033
[11] Liao P, Chen J H, Huang H and Wang Y J 2014 Gen. Relativ. Gravit. 46 1752
[12] Huang H, Liao P, Chen J H and Wang Y J 2014 J. Grav. 2014 231727
[13] Huang H, Jiang M J, Chen J H and Wang Y J 2015 Gen. Relativ. Gravit. 47 8
[14] Chen J H, Liao H and Wang Y J 2013 Eur. Phys. J. C 73 2395
[15] Sotiriou T P and Faraoni V 2010 Rev. Mod. Phys. 82 451
[16] Multam?ki T and Vilja I 2006 Phys. Rev. D 74 064022
[17] Bean R, Bernat D, Pogosian L, Silvestri A and Trodden M 2007 Phys. Rev. D 75 064020
[18] Bertolami O, Bohmer C G, Harko T and Lobo F S N 2007 Phys. Rev. D 75 104016
[19] Nzioki A M, Dunsby P K S, Goswami R and Carloni S 2011 Phys. Rev. D 83 024030
[20] Sebastian S and Kuriakose V C arXiv:1401.3480[gr-qc]
[21] Sebastiani L and Zerbini S 2011 Eur. Phys. J. C 71 1591
[22] Crispino L C B, Sam Dolan and Oliveira E S 2009 Phys. Rev. D 79 064022
[23] Décanini Y, Folacci A and Raffaelli B 2010 Phys. Rev. D 81 104039
[24] Doran C, Lasenby A, Sam Dolan and Hinder I 2005 Phys. Rev. D 71 124020
[25] Higuchi A 2001 Class. Quantum Grav. 18 L139
[26] Chen J H, Liao H and Wang Y J 2011 Phys. Lett. B 705 124
[27] Liao H, Chen J H and Wang Y J 2012 Int. J. Mod. Phys. D 21 1250045
[28] Dey A, Roy P and Sarkar T 2013 arXiv:1303.6824v1[gr-qc]
[29] Gotfried K and Yan T M 2004 Quantum Mechanics: Fundmentals (New York: Springer) 2nd edn
[30] Dolan S R, Oliverira E S and Crispino L C B 2009 Phys. Rev. D 79 064014
[31] Dolan S R, Doran C J L and Lasemby A N 2006 Phys. Rev. D 74 064005
[32] Liao H, Chen J H and Wang Y J 2013 Int. J. Theor. Phys. 52 1474
Related articles from Frontiers Journals
[1] Y. Kenedy Meitei, T. Ibungochouba Singh, I. Ablu Meitei. Quantization of Horizon Area of Kerr–Newman–de Sitter Black Hole[J]. Chin. Phys. Lett., 2019, 36(3): 050401
[2] Jun Liang. Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole: Gravitational, Electromagnetic and Massless Dirac Perturbations[J]. Chin. Phys. Lett., 2018, 35(5): 050401
[3] Ming Zhang, Rui-Hong Yue. Phase Transition and Quasinormal Modes for Spherical Black Holes in 5D Gauss–Bonnet Gravity[J]. Chin. Phys. Lett., 2018, 35(4): 050401
[4] Jun Liang. Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole[J]. Chin. Phys. Lett., 2018, 35(1): 050401
[5] Jun Liang. The $P$–$v$ Criticality of a Noncommutative Geometry-Inspired Schwarzschild-AdS Black Hole[J]. Chin. Phys. Lett., 2017, 34(8): 050401
[6] Jun Liang. Regular Magnetic Black Hole Gravitational Lensing[J]. Chin. Phys. Lett., 2017, 34(5): 050401
[7] Xiao-Xiong Zeng, Xin-Yun Hu, Li-Fang Li. Effect of Phantom Dark Energy on Holographic Thermalization[J]. Chin. Phys. Lett., 2017, 34(1): 050401
[8] Yue-Yi Wang, Ju-Hua Chen, Yong-Jiu Wang. Stability Analysis of the Viscous Polytropic Dark Energy Model in Einstein Cosmology[J]. Chin. Phys. Lett., 2016, 33(10): 050401
[9] Belhaj A., Chabab M., El Moumni H., Masmar K., Sedra M. B.. On Hawking Radiation of 3D Rotating Hairy Black Holes[J]. Chin. Phys. Lett., 2015, 32(10): 050401
[10] ZHANG Ruan-Jing, CHEN Ju-Hua, GAN Qiao-Shan, WANG Yong-Jiu. Time-Like Geodesic Motion in Schwarzschild Spacetime with Weak-Field Limit[J]. Chin. Phys. Lett., 2015, 32(08): 050401
[11] LI Ran. Hawking Radiation of Dirac Field in the Linear Dilaton Black Hole[J]. Chin. Phys. Lett., 2014, 31(06): 050401
[12] LIU Chang-Qing. Collision of Two General Geodesic Particles around a Kerr–Newman Black Hole[J]. Chin. Phys. Lett., 2013, 30(10): 050401
[13] Kourosh Nozari, A. Yazdani. The Energy Distribution of a Noncommutative Reissner–Nordstr?m Black Hole[J]. Chin. Phys. Lett., 2013, 30(9): 050401
[14] CHEN Song-Bai, LIU Xiao-Fang, LIU Chang-Qing. PV Criticality of an AdS Black Hole in f(R) Gravity[J]. Chin. Phys. Lett., 2013, 30(6): 050401
[15] A. Belhaj, M. Chabab, H. El Moumni, M. B. Sedra. On Thermodynamics of AdS Black Holes in Arbitrary Dimensions[J]. Chin. Phys. Lett., 2012, 29(10): 050401
Viewed
Full text


Abstract