Chin. Phys. Lett.  2015, Vol. 32 Issue (5): 050303    DOI: 10.1088/0256-307X/32/5/050303
GENERAL |
An Ideal Experiment to Determine the 'Past of a Particle' in the Nested Mach–Zehnder Interferometer
LI Fu1**, Hashmi F. A.2, ZHANG Jun-Xiang3, ZHU Shi-Yao1,3,4
1Beijing Computational Science Research Center, Beijing 100094
2Department of Physics, COMSATS Institute of Information Technology, Islamabad, Pakistan
3The State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006
4Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
LI Fu, Hashmi F. A., ZHANG Jun-Xiang et al  2015 Chin. Phys. Lett. 32 050303
Download: PDF(427KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An ideal experiment is designed to determine the past of a particle in the nested Mach–Zehnder interferometer (MZI) by using standard quantum mechanics with quantum non-demolition measurements. We find that when the photon reaches the detector, it only follows one arm of the outer interferometer and leaves no trace in the inner MZI. When it goes through the inner MZI, it cannot reach the detector. Our result obtained from the standard quantum mechanics contradicts the statement based on two-state vector formulism, 'the photon did not enter the (inner) interferometer, the photon never left the interferometer, but it was there'. Therefore, the statement and also the overlapping claim are incorrect.
Received: 22 December 2014      Published: 01 June 2015
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Ca (Formalism)  
  42.25.Hz (Interference)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/5/050303       OR      https://cpl.iphy.ac.cn/Y2015/V32/I5/050303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Fu
Hashmi F. A.
ZHANG Jun-Xiang
ZHU Shi-Yao
[1] Scully M, Englert B and Walter H 1991 Nature 351 111
[2] Herzog T J, Kwiat P G, Weinfurter H and Zeilinger A 1995 Phys. Rev. Lett. 75 3034
[3] Jacques V, Wul E, Grosshans F, Treussart F, Grangier P, Aspect A and Roch J F 2007 Science 315 966
[4] Jia A A, Huang J H, Feng W and Zhu S Y 2014 Chin. Phys. B 23 030307
[5] Han Y, Wu C W, Wu W, Chen P X and Li C Z 2009 Chin. Phys. Lett. 26 040303
[6] Vaidman L 2007 Phys. Rev. Lett. 98 160403
[7] Danan A, Farfurnik D, Bar-Ad S and Vaidman L 2013 Phys. Rev. Lett. 111 240402
[8] Liao X P, Fang M F, Fang J S and Zhu Q Q 2014 Chin. Phys. B 23 20304
[9] Du S J, Xia Y J, Duan D Y, Zhang L and Gao Q 2015 Chin. Phys. B 24 044205
[10] He Z and Yao C M 2014 Chin. Phys. B 23 110601
[11] Hosten O and Kwiat P 2008 Science 319 787
[12] Lundeen J S, Sutherland B, Patel A, Stewart C and Bamber C 2011 Nature 474 188
[13] Kocsis S, Braverman B, Ravets S, Stevens M, Mirin R P, Shalm L K and Steinberg A M 2011 Science 332 1170
[14] Hosten O, Rakher M T, Barreiro J T, Peters N A and Wiat P G 2006 Nature 439 949
[15] Kwiat P, Weinfurter H, Herzog T and Zeilinge A 1995 Phys. Rev. Lett. 74 4763
[16] Salih H, Li Z H, Al-Amri M and Zubairy M S 2013 Phys. Rev. Lett. 110 170502
[17] Aharonov Y and Vaidman L 1990 Phys. Rev. A 41 11
[18] Aharonov Y and Vaidman L 1991 J. Phys. A: Math. Gen. 24 2315
[19] Vaidman L 2014 Phys. Rev. A 89 024102
[20] Vaidman L 2013 Phys. Rev. A 87 052104
[21] Li Z H, Al-Amri M and Zubairy M S 2013 Phys. Rev. A 88 046102
[22] Vaidman L 2013 Phys. Rev. A 88 046103
[23] Salih H 2014 arXiv:1401.4888v2
[24] Svensson B E Y 2014 arXiv:1402.4315
[25] Saldanha P L 2014 Phys. Rev. A 89 033825
[26] Imoto N, Haus H A and Yamamoto Y 1985 Phys. Rev. A 32 2287
[27] Feizpour A, Xing X X and Steinberg A M 2011 Phys. Rev. Lett. 107 133603
[28] Zubairy M S, Matsko A B and Scully M O 2002 Phys. Rev. A 65 043804
[29] Ottaviani C, Vitali D, Artoni M, Cataliotti F and Tombesi P 2003 Phys. Rev. Lett. 90 197902
[30] Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V et al 2012 Nature 488 57
[31] Zhang X Q, Wang C S, Lu G Y and He T C 2010 Chin. Phys. Lett. 27 074201
[32] Fu G, Kazuo K, Hiroaki O and Shunsuke T 2005 Chin. Phys. Lett. 22 1687
[33] Zhang Y N 2013 Chin. Phys. B 22 014214
[34] Sun X, Chen Y S and Xu L 1995 Chin. Phys. Lett. 12 541
[35] Wu S P, Zhang L J and Li G X 2008 Chin. Phys. B 17 185
[36] Li R B, Deng L and Hagley E W 2013 Phys. Rev. Lett. 110 113902
[37] Kang H and Zhu Y f 2003 Phys. Rev. Lett. 91 093601
[38] Lo H Y, Chen Y C et al 2011 Phys. Rev. A 83 041804
[39] Lo H Y, Su P C and Chen Y F 2010 Phys. Rev. A 81 053829
[40] Vaidman L 2014 Phys. Rev. Lett. 112 208901
[41] Salih H, Li Z H, Al-Amri M and Zubairy M S 2014 Phys. Rev. Lett. 112 208902
Related articles from Frontiers Journals
[1] Qiuxin Zhang, Chenhao Zhu, Yuxin Wang, Liangyu Ding, Tingting Shi, Xiang Zhang, Shuaining Zhang, and Wei Zhang. Experimental Test of Contextuality Based on State Discrimination with a Single Qubit[J]. Chin. Phys. Lett., 2022, 39(8): 050303
[2] Jie Xie, Li Zhou, Aonan Zhang, Huichao Xu, Man-Hong Yung, Ping Xu, Nengkun Yu, and Lijian Zhang. Entirety of Quantum Uncertainty and Its Experimental Verification[J]. Chin. Phys. Lett., 2021, 38(7): 050303
[3] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 050303
[4] Wei-Min Shang, Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement[J]. Chin. Phys. Lett., 2020, 37(5): 050303
[5] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 050303
[6] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 050303
[7] Junzhao Liu, Yanjun Liu, Jing Lu. Complementarity via Minimum Error Measurement in a Two-Path Interferometer[J]. Chin. Phys. Lett., 2019, 36(5): 050303
[8] Yang Yang, An-Min Wang, Lian-Zhen Cao, Jia-Qiang Zhao, Huai-Xin Lu. Frozen Quantum Coherence for a Central Two-Qubit System in a Spin-Chain Environment[J]. Chin. Phys. Lett., 2018, 35(8): 050303
[9] W.-B. Wang, X.-Y. Chang, F. Wang, P.-Y. Hou, Y.-Y. Huang, W.-G. Zhang, X.-L. Ouyang, X.-Z. Huang, Z.-Y. Zhang, H.-Y. Wang, L. He, L.-M. Duan. Realization of Quantum Maxwell's Demon with Solid-State Spins[J]. Chin. Phys. Lett., 2018, 35(4): 050303
[10] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 050303
[11] A. Ben-Israel, L. Knips, J. Dziewior, J. Meinecke, A. Danan, H. Weinfurter, L. Vaidman. An Improved Experiment to Determine the 'Past of a Particle' in the Nested Mach–Zehnder Interferometer[J]. Chin. Phys. Lett., 2017, 34(2): 050303
[12] Bing-Sheng Lin, Tai-Hua Heng. A Relation of the Noncommutative Parameters in Generalized Noncommutative Phase Space[J]. Chin. Phys. Lett., 2016, 33(11): 050303
[13] Zhi-Yuan Li. Time-Modulated Hamiltonian for Interpreting Delayed-Choice Experiments via Mach–Zehnder Interferometers[J]. Chin. Phys. Lett., 2016, 33(08): 050303
[14] Faizi E., Eftekhari H.. Quantum Correlations in Ising-XYZ Diamond Chain Structure under an External Magnetic Field[J]. Chin. Phys. Lett., 2015, 32(10): 050303
[15] SUN Jun, SUN Yong-Nan, LI Chuan-Feng, GUO Guang-Can. On Delay of the Delayed Choice Experiment[J]. Chin. Phys. Lett., 2015, 32(09): 050303
Viewed
Full text


Abstract