Chin. Phys. Lett.  2015, Vol. 32 Issue (5): 050302    DOI: 10.1088/0256-307X/32/5/050302
GENERAL |
Thermal Entanglement in the Pure Dzyaloshinskii–Moriya Model with Magnetic Field
LI Da-Chuang1,2,3**, LI Xiao-Man1,2, LI Hu1,2, TAO Rui1, YANG Ming2, CAO Zhuo-Liang1,2
1School of Electronic and Information Engineering, Hefei Normal University, Hefei 230601
2School of Physics and Material Science, Anhui University, Hefei 230039
3Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
LI Da-Chuang, LI Xiao-Man, LI Hu et al  2015 Chin. Phys. Lett. 32 050302
Download: PDF(3356KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate the effects of the directions of Dzyaloshinskii–Moriya (DM) interaction and magnetic field on the thermal entanglement in the pure DM model. It is found that when the Hamiltonian is H1= D(σ1σ2)+Bσ1, the entanglement can reach its maximum if the directions of the magnetic field and the DM vector are parallel. In addition, when the Hamiltonian is H2=D⋅(σ1σ2)+B⋅(σ1+σ2), if the directions of the magnetic field and the DM vector are perpendicular in a high magnetic field, or their directions are parallel in a weak magnetic field, the entanglement can also reach its maximum. Thus the entanglement can be enhanced by adjusting the direction of the external magnetic field, and this is feasible within the current experimental technology.

Received: 14 February 2015      Published: 01 June 2015
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/5/050302       OR      https://cpl.iphy.ac.cn/Y2015/V32/I5/050302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Da-Chuang
LI Xiao-Man
LI Hu
TAO Rui
YANG Ming
CAO Zhuo-Liang

[1] Bennett C H et al 1993 Phys. Rev. Lett. 70 1895
[2] Bennett C H, Bernstein H J et al 1996 Phys. Rev. A 53 2046
[3] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[4] Sabour A and Jafarpour M 2011 Chin. Phys. Lett. 28 070301
[5] Wang X G 2001 Phys. Rev. A 64 012313
[6] Zhou L and Song H S 2003 Phys. Rev. A 68 024301
[7] Zhang G F and Li S S 2005 Phys. Rev. A 72 034302
[8] Yeo Y and Liu T 2005 J. Phys. A: Math. Gen. 38 3235
[9] Yu P F, Cai J G et al 2007 Eur. Phys. J. D 44 151
[10] Zhou Y and Zhang G F 2008 Eur. Phys. J. D 47 227
[11] Li D C and Cao Z L 2009 Opt. Commun. 282 1226
[12] Li D C and Cao Z L 2010 Commun. Theor. Phys. 53 659
[13] Dzialoshinski I 1958 J. Phys. Chem. Solids 4 241
[14] Moriya T 1960 Phys. Rev. Lett. 4 228
[15] Gurkan Z N and Pashaev O K 2010 Int. J. Mod. Phys. B 24 943
[16] McElearney J N and Merchant S 1978 Phys. Rev. B 18 3612
[17] Zhang G F 2007 Phys. Rev. A 75 034304
[18] Ma X S 2008 Opt. Commun. 281 484
[19] Li D C and Cao Z L 2008 Eur. Phys. J. D 50 207
[20] Li D C, Wang X P and Cao Z L 2008 J. Phys.: Condens. Matter 20 325229
[21] Li D C and Cao Z L 2009 Chin. Phys. Lett. 26 020309
[22] Qian L and Fang J X 2009 Commun. Theor. Phys. 52 817
[23] Jafarpour M and Ashrafpour M 2013 Quantum Inf. Process. 12 761
[24] Ma X S, Tian C M et al 2012 Physica A 391 2500
[25] Tursun M, Abliz A et al 2013 Chin. Phys. Lett. 30 030303
[26] Talab M A and Jahromi H R 2013 Quantum Inf. Process. 12 1185
[27] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
       Wooters W K 1998 Phys. Rev. Lett. 80 2245

Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 050302
[2] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 050302
[3] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan. Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves[J]. Chin. Phys. Lett., 2022, 39(8): 050302
[4] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 050302
[5] Qi Zhang and Guang-Ming Zhang. Noise-Induced Entanglement Transition in One-Dimensional Random Quantum Circuits[J]. Chin. Phys. Lett., 2022, 39(5): 050302
[6] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 050302
[7] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 050302
[8] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 050302
[9] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 050302
[10] Hongye Yu, Frank Wilczek, and Biao Wu. Quantum Algorithm for Approximating Maximum Independent Sets[J]. Chin. Phys. Lett., 2021, 38(3): 050302
[11] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 050302
[12] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 050302
[13] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 050302
[14] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 050302
[15] Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu, Jian Li. Landau–Zener–Stückelberg Interference in Nonlinear Regime[J]. Chin. Phys. Lett., 2019, 36(12): 050302
Viewed
Full text


Abstract