CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Doping Effect of Co at Ag Sites in Antiperovskite Mn3AgN Compounds |
CHU Li-Hua1,2, WANG Cong2**, SUN Ying2, LI Mei-Cheng1, WAN Zi-Pei1, WANG Yu1, DOU Shang-Yi1, CHU Yue1 |
1State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 2Center for Condensed Matter and Materials Physics, Department of Physics, Beihang University, Beijing 100191
|
|
Cite this article: |
CHU Li-Hua, WANG Cong, SUN Ying et al 2015 Chin. Phys. Lett. 32 047501 |
|
|
Abstract Antiperovskite compounds Mn3Ag1?xCoxN (x=0.2, 0.5 and 0.8) are synthesized and the doping effect of the magnetic element Co at the Ag site is investigated. The crystal structure is not changed by the introduction of Co. However, with the increase of the content of Co, the spin reorientation gradually disappears and the antiferromagnetic transition changes to the ferromagnetic transition at the elevated temperature when x=0.8. In addition, all of the magnetic phase transitions at the elevated temperature are always accompanied by the abnormal thermal expansion behaviors and an entropy change. Moreover, when x=0.8, the coefficient of linear expansion is ?1.89×10?6 K?1 (290–310 K, ΔT=20 K), which is generally considered as the low thermal expansion.
|
|
Received: 08 December 2014
Published: 30 April 2015
|
|
|
|
|
|
[1] Hamad M A 2014 J. Supercond. Novel Magn. 27 2569 [2] Kamishima K, Goto T, Nakagawa H, Miura N, Ohashi M and N Mori 2000 Phys. Rev. B 63 024426 [3] Wang C, Chu L H, Yao Q R, Sun Y, Wu M M, Ding L, Yan J, Na Y Y, Tang W H, Li G N, Huang Q Z and Lynn J W 2012 Phys. Rev. B 85 220103(R) [4] Song X Y, Sun, Z H, Huang Q Z, Rettenmayr M, Liu X M, Seyring M, Li G N, Rao G H and Yin F X 2011 Adv. Mater. 23 4690 [5] Tan J, Huang R J, Li W, Han Y M and Li L F 2014 J. Alloys Compd. 593 103 [6] Shimizu T, Shibayama T, Asano K and Takenaka K 2012 J. Appl. Phys. 111 07A903 [7] Wang B S, Tong P, Sun Y P, Li L J, Tang W, Lu W J, Zhu X B, Yang Z R and Song W H 2009 Appl. Phys. Lett. 95 222509 [8] Takenaka K Hamada T, Shibayama T and Asano K 2013 J. Alloys Compd. 577 S291 [9] Tong P, Wang B S and Sun Y P 2013 Chin. Phys. B 22 067501 [10] Nakamura Y, Takenaka K, Kishimoto A and Takagi H 2009 J. Am. Ceram. Soc. 92 2999 [11] Huang R J, Wu Z X, Yang H H, Chen Z, Chu X X and Li L F 2010 Cryogenics 50 750 [12] Hu J Y, Wen Y C, Yao Y, Wang C, Zhan Q, Jin C Q and Yu R C 2012 Chin. Phys. Lett. 29 086201 [13] Takenaka K and Takagi H 2006 Mater. Trans. 47 471 [14] Cheng D 1999 J. Appl. Crystallogr. 32 838 [15] Chu L H, Wang C, Yan J, Na Y Y, Ding L, Sun Y and Wen Y C 2012 Scr. Mater. 67 173 [16] Lin S, Wang B S, Lin J C, Zhang L, Hu X B, Huang Y N, Lu W J, Zhao B C, Tong P, Song W H and Sun Y P 2011 Appl. Phys. Lett. 99 172503 [17] Fruchart D and Bertaut E F 1978 J. Phys. Soc. Jpn. 44 781 [18] Gomonaj E V 1989 Phase Transit. 18 93 [19] Gomonaj E V and L'Vov V A 1992 Phase Transit. 40 225 [20] Jardin J P and LabbéJ 1975 J. Phys. France 36 1317 [21] Gerasimov E G, Gaviko V S, Neverov V N and Korolyov A V 2002 J. Alloys Compd. 343 14 [22] Sun Y, Guo Y F, Tsujimoto Y, Yang J J, Shen B, Yi W, Matsushita Y, Wang C, Wang X, Li Jun, Sathish I C and Yamaura K 2013 Inorg. Chem. 52 800 [23] García J et al 1980 J. Magn. Magn. Mater. 15 1155 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|