Chin. Phys. Lett.  2015, Vol. 32 Issue (4): 047501    DOI: 10.1088/0256-307X/32/4/047501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Doping Effect of Co at Ag Sites in Antiperovskite Mn3AgN Compounds
CHU Li-Hua1,2, WANG Cong2**, SUN Ying2, LI Mei-Cheng1, WAN Zi-Pei1, WANG Yu1, DOU Shang-Yi1, CHU Yue1
1State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206
2Center for Condensed Matter and Materials Physics, Department of Physics, Beihang University, Beijing 100191
Cite this article:   
CHU Li-Hua, WANG Cong, SUN Ying et al  2015 Chin. Phys. Lett. 32 047501
Download: PDF(781KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Antiperovskite compounds Mn3Ag1?xCoxN (x=0.2, 0.5 and 0.8) are synthesized and the doping effect of the magnetic element Co at the Ag site is investigated. The crystal structure is not changed by the introduction of Co. However, with the increase of the content of Co, the spin reorientation gradually disappears and the antiferromagnetic transition changes to the ferromagnetic transition at the elevated temperature when x=0.8. In addition, all of the magnetic phase transitions at the elevated temperature are always accompanied by the abnormal thermal expansion behaviors and an entropy change. Moreover, when x=0.8, the coefficient of linear expansion is ?1.89×10?6 K?1 (290–310 K, ΔT=20 K), which is generally considered as the low thermal expansion.
Received: 08 December 2014      Published: 30 April 2015
PACS:  75.50.Ee (Antiferromagnetics)  
  75.50.Gg (Ferrimagnetics)  
  65.40.De (Thermal expansion; thermomechanical effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/4/047501       OR      https://cpl.iphy.ac.cn/Y2015/V32/I4/047501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHU Li-Hua
WANG Cong
SUN Ying
LI Mei-Cheng
WAN Zi-Pei
WANG Yu
DOU Shang-Yi
CHU Yue
[1] Hamad M A 2014 J. Supercond. Novel Magn. 27 2569
[2] Kamishima K, Goto T, Nakagawa H, Miura N, Ohashi M and N Mori 2000 Phys. Rev. B 63 024426
[3] Wang C, Chu L H, Yao Q R, Sun Y, Wu M M, Ding L, Yan J, Na Y Y, Tang W H, Li G N, Huang Q Z and Lynn J W 2012 Phys. Rev. B 85 220103(R)
[4] Song X Y, Sun, Z H, Huang Q Z, Rettenmayr M, Liu X M, Seyring M, Li G N, Rao G H and Yin F X 2011 Adv. Mater. 23 4690
[5] Tan J, Huang R J, Li W, Han Y M and Li L F 2014 J. Alloys Compd. 593 103
[6] Shimizu T, Shibayama T, Asano K and Takenaka K 2012 J. Appl. Phys. 111 07A903
[7] Wang B S, Tong P, Sun Y P, Li L J, Tang W, Lu W J, Zhu X B, Yang Z R and Song W H 2009 Appl. Phys. Lett. 95 222509
[8] Takenaka K Hamada T, Shibayama T and Asano K 2013 J. Alloys Compd. 577 S291
[9] Tong P, Wang B S and Sun Y P 2013 Chin. Phys. B 22 067501
[10] Nakamura Y, Takenaka K, Kishimoto A and Takagi H 2009 J. Am. Ceram. Soc. 92 2999
[11] Huang R J, Wu Z X, Yang H H, Chen Z, Chu X X and Li L F 2010 Cryogenics 50 750
[12] Hu J Y, Wen Y C, Yao Y, Wang C, Zhan Q, Jin C Q and Yu R C 2012 Chin. Phys. Lett. 29 086201
[13] Takenaka K and Takagi H 2006 Mater. Trans. 47 471
[14] Cheng D 1999 J. Appl. Crystallogr. 32 838
[15] Chu L H, Wang C, Yan J, Na Y Y, Ding L, Sun Y and Wen Y C 2012 Scr. Mater. 67 173
[16] Lin S, Wang B S, Lin J C, Zhang L, Hu X B, Huang Y N, Lu W J, Zhao B C, Tong P, Song W H and Sun Y P 2011 Appl. Phys. Lett. 99 172503
[17] Fruchart D and Bertaut E F 1978 J. Phys. Soc. Jpn. 44 781
[18] Gomonaj E V 1989 Phase Transit. 18 93
[19] Gomonaj E V and L'Vov V A 1992 Phase Transit. 40 225
[20] Jardin J P and LabbéJ 1975 J. Phys. France 36 1317
[21] Gerasimov E G, Gaviko V S, Neverov V N and Korolyov A V 2002 J. Alloys Compd. 343 14
[22] Sun Y, Guo Y F, Tsujimoto Y, Yang J J, Shen B, Yi W, Matsushita Y, Wang C, Wang X, Li Jun, Sathish I C and Yamaura K 2013 Inorg. Chem. 52 800
[23] García J et al 1980 J. Magn. Magn. Mater. 15 1155
Related articles from Frontiers Journals
[1] Jian-Gang Kong, Qing-Xu Li, Jian Li, Yu Liu, and Jia-Ji Zhu. Self-Supervised Graph Neural Networks for Accurate Prediction of Néel Temperature[J]. Chin. Phys. Lett., 2022, 39(6): 047501
[2] Lin Huang, Yongjian Zhou, Tingwen Guo, Feng Pan, and Cheng Song. Tunable Spin Hall Magnetoresistance in All-Antiferromagnetic Heterostructures[J]. Chin. Phys. Lett., 2022, 39(4): 047501
[3] Chunyan Liao, Yahui Jin, Wei Zhang, Ziming Zhu, and Mingxing Chen. Fe$_{2}$Ga$_{2}$S$_{5}$ as a 2D Antiferromagnetic Semiconductor[J]. Chin. Phys. Lett., 2020, 37(10): 047501
[4] Yu-Jie Yuan, Cheng-He Li, Shang-Jie Tian, He-Chang Lei, Xiao Zhang. Tuning of Magnetic Properties of $\alpha$-RuCl$_{3}$ Single Crystal by Cr Doping[J]. Chin. Phys. Lett., 2020, 37(6): 047501
[5] Yu-Jie Yuan, Cheng-He Li, Shang-Jie Tian, He-Chang Lei, Xiao Zhang. Tuning of Magnetic Properties of $\alpha$-RuCl$_{3}$ Single Crystal by Cr Doping *[J]. Chin. Phys. Lett., 0, (): 047501
[6] Huan-Cheng Chen, Zhe-Feng Lou, Yu-Xing Zhou, Qin Chen, Bin-Jie Xu, Shui-Jin Chen, Jian-Hua Du, Jin-Hu Yang, Hang-Dong Wang, Ming-Hu Fang. Negative Magnetoresistance in Antiferromagnetic Topological Insulator EuSn$_2$As$_2$$^{*}$[J]. Chin. Phys. Lett., 2020, 37(4): 047501
[7] Qi Wang, Qianheng Du, Cedomir Petrovic, Hechang Lei. Physical Properties of Half-Heusler Antiferromagnet MnPtSn Single Crystal[J]. Chin. Phys. Lett., 2020, 37(2): 047501
[8] Xu-Peng Zhao, Da-Hai Wei, Jun Lu, Si-Wei Mao, Zhi-Feng Yu, Jian-Hua Zhao. Tunneling Anisotropic Magnetoresistance in $L1_{0}$-MnGa Based Antiferromagnetic Perpendicular Tunnel Junction[J]. Chin. Phys. Lett., 2018, 35(8): 047501
[9] Pan Liu, Wei-Hua Wang, Wei-Chao Wang, Ya-Hui Cheng, Feng Lu, Hui Liu. D-Type Anti-Ferromagnetic Ground State in Ca$_{2}$Mn$_{2}$O$_{5}$[J]. Chin. Phys. Lett., 2017, 34(2): 047501
[10] CHEN Xu-Liang, SONG Wen-Hai, YANG Zhao-Rong. Field-Induced Structural Transition in the Bond Frustrated Spinel ZnCr2Se4[J]. Chin. Phys. Lett., 2015, 32(12): 047501
[11] MALIK Muhammad-Imran, SUN Ying, DENG Si-Hao, SHI Ke-Wen, HU Peng-Wei, WANG Cong. Nitrogen-Induced Change of Magnetic Properties in Antiperovskite-Type Carbide: Mn3InC[J]. Chin. Phys. Lett., 2015, 32(06): 047501
[12] LIU Zhao-Sen, YANG Cui-Hong, GU Bin, MA Rong, LI Qing-Fang. The Application of a New Simulation Approach to Ferrimagnetic Nanowires[J]. Chin. Phys. Lett., 2013, 30(9): 047501
[13] XU Yin-Jie, ZHAO Hui, CHEN Yu-Guang, YAN Yong-Hong. Spin-Peierls Instability in the Ferromagnetic Heisenberg Ladder[J]. Chin. Phys. Lett., 2013, 30(3): 047501
[14] YUAN Xue-Yong, XUE Xiao-Bo, SI Li-Fang, DU Jun, XU Qing-Yu. Exchange Bias in Polycrystalline BiFe1-xMnxO3/Ni81Fe19 Bilayers[J]. Chin. Phys. Lett., 2012, 29(9): 047501
[15] CHEN Feng-Liang,ZHOU Shi-Ming**. Magnetoresistance Effect in Antiferromagnet-Based Nanogranular Films[J]. Chin. Phys. Lett., 2012, 29(4): 047501
Viewed
Full text


Abstract