CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Low-Temperature Deposition of nc-SiOx:H below 400°C Using Magnetron Sputtering |
LI Yun, YIN Chen-Chen, JI Yun, SHI Zhen-Liang, JIN Cong-Hui, YU Wei**, LI Xiao-Wei** |
Hebei Key Laboratory of Optic-Electronic Information Materials, College of Physics Science and Technology, Hebei University, Baoding 071002
|
|
Cite this article: |
LI Yun, YIN Chen-Chen, JI Yun et al 2015 Chin. Phys. Lett. 32 046802 |
|
|
Abstract Silicon oxide films containing nanocrystalline silicon (nc-SiOx:H) are deposited by co-sputtering technology at low temperatures (<400°C) that are much lower than the typical growth temperature of nc-Si in SiO2. The microstructures and bonding properties are characterized by Raman and FTIR. It is proven that an optimum range of substrate temperatures for the deposition of nc-SiOx:H films is 200–400°C, in which the ratio of transition crystalline silicon decreases, the crystalline fraction is higher, and the hydrogen content is lower. The underlying mechanism is explained by a competitive process between nc-Si Wolmer–Weber growth and oxidation reaction, both of which achieve a balance in the range of 200–400°C. We further implement this technique in the fabrication of multilayered nc-SiOx:H/a-SiOx:H films, which exhibit controllable nc-Si sizes with high crystallization quality.
|
|
Received: 12 October 2014
Published: 30 April 2015
|
|
PACS: |
68.55.-a
|
(Thin film structure and morphology)
|
|
61.82.Rx
|
(Nanocrystalline materials)
|
|
|
|
|
[1] Yao Y, Yao J, Vijay K N, Ruan Z C, Xie C, Fan S H and Cui Y 2012 Nat. Commun. 3 664 [2] Guo Y Q, Huang R, Song J, Wang X, Song C and Zhang Y X 2012 Chin. Phys. B 21 066106 [3] Fathi E, Vygranenko Y, Vieira M and Sazono A 2011 Appl. Surf. Sci. 257 8901 [4] Xia Z Y, Han P G, Xu J, Chen D Y, Wei D Y, Ma Z Y, Chen K J, Xu L and Huang X F 2007 Chin. Phys. Lett. 24 2657 [5] Cho E C, Park S W, Hao X J, Song D Y, Conibeer G, Park S C and Green M A 2008 Nanotechnology 19 245201 [6] Mota-Pineda E, Melendez-Lira M and Zapata-Torres M 2010 J. Appl. Phys. 108 094323 [7] Yan B J, Yue G Z, Sivec L, Yang J, Guha S and Jiang C S 2011 Appl. Phys. Lett. 99 113512 [8] Lambertz A, Grundler T and Finger F 2011 J. Appl. Phys. 109 113109 [9] Veneri P D, Mercaldo L V and Iurie U 2010 Appl. Phys. Lett. 97 023512 [10] Laura S B, Nicholas R W, Ian V K, Sun J Y and Roger H F 2013 IEEE J. Photovoltaics 3 27 [11] Hsiao C Y, Shih C F, Su K W, Chen H J and Fu S W 2011 Appl. Phys. Lett. 99 053115 [12] Comedi D, Zalloum O H Y, Irving E A, Wojcik J, Roschuk T, Flynn M J and Mascher P 2006 J. Appl. Phys. 99 023518 [13] Yu W, Wang B Z, Lu W B, Yang Y B, Han L and Fu G S 2004 Chin. Phys. Lett. 21 1320 [14] Han D X, Wang K D and Owens J M 2003 J. Appl. Phys. 94 2930 [15] Basudeb S and Debajyoti D 2013 Sci. Adv. Mater. 5 188 [16] Tsu D V, Lucovsky G and Davidson B N 1989 Phys. Rev. B 40 1795 [17] He L, Inokuma T, Kurata Y and Hasegawa S J 1995 J. Non-Cryst. Solids 185 249 [18] Gaskell P H and Wallis D J 1996 Phys. Rev. Lett. 76 66 [19] Buljan M, Desnia U V, Ivanda M, Radic N, Dubcek P, Drazic G, Salamon K, Bernstorff S and Holy V 2009 Phys. Rev. B 79 035310 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|