Chin. Phys. Lett.  2015, Vol. 32 Issue (4): 044102    DOI: 10.1088/0256-307X/32/4/044102
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Microwave Absorption Properties of Polyester Composites Incorporated with Heterostructure Nanofillers with Carbon Nanotubes as Carriers
LIU Hai-Tao1, LIU Yang2, WANG Bin-Song2**, LI Chen-Sha3**
1College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035
2Key Laboratory of Chemical Engineering Process and Technology for High-Efficiency Conversion, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080
3Department of Mechanical Engineering, Tsinghua University, Beijing 100084
Cite this article:   
LIU Hai-Tao, LIU Yang, WANG Bin-Song et al  2015 Chin. Phys. Lett. 32 044102
Download: PDF(718KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Carbonaceous nanomaterials such as carbon nanotubes (CNTs), magnetic metal nanomaterials and semiconductor nanomaterials are superior candidates for microwave absorbers. Taking full advantage of the features of CNTs, nanophase cobalt and nanophase zinc oxide, whose main microwave absorption mechanisms are based on resistance loss, magnetic loss and dielectric loss, we fabricate CNT/Co and CNT/ZnO heterostructure nanocomposites, respectively. By using the CNTs, CNT/Co nanocomposites and CNT/ZnO nanocomposites as nanofillers, composites with polyester as matrix are prepared by in situ polymerization, and their microwave absorption performance is studied. It is indicated that the synergetic effects of the physic properties of different components in nano-heterostructures result in greatly enhanced microwave absorption performance in a wide frequency range. The absorption peak is increased, the absorption bandwidth is broadened, and the maximum peak shifts to a lower frequency.
Received: 03 October 2014      Published: 30 April 2015
PACS:  41.20.Gz (Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  72.10.Fk (Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/4/044102       OR      https://cpl.iphy.ac.cn/Y2015/V32/I4/044102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Hai-Tao
LIU Yang
WANG Bin-Song
LI Chen-Sha
[1] Qin F and Peng H X 2013 Prog. Mater. Sci. 58 183
[2] Yang X C, Liu R J, Shen X Q, Song F Z, Jing M X and Meng X F 2013 Chin. Phys. B 22 058101
[3] Qin F and Brosseau C 2012 J. Appl. Phys. 111 061301
[4] Singh N S, Singh S D and Meetei S D 2014 Chin. Phys. B 23 058104
[5] Li Z P, Men C L, Wang W and Cao J 2014 Chin. Phys. B 23 057205
[6] Dong Y M, Tang D Y and Li C S 2014 Sci. Chin. Tech. Sci. 57 2153
[7] Xie Z G, Geng D Y, Liu X G, Ma S and Zhang Z D 2011 J. Mater. Sci. Technol. 27 607
[8] Liu X G, Geng D Y, Meng H, Cui W B, Yang F, Kang D J and Zhang Z D 2009 Solid State Commun. 149 64
[9] Wang Z L and Song J H 2006 Science 312 242
[10] Zhou R F, Feng H T, Chen J T, Yan D, Feng J J, Li H J, Geng B S, Cheng S, Xu X Y and Yan P X 2008 J. Phys. Chem. C 112 11767
[11] Chen Y J, Cao M S, Wang T H and Wan Q 2004 Appl. Phys. Lett. 84 3367
[12] Burke P, Li S and Yu Z 2006 IEEE Trans. Nanotechnol. 5 314
[13] Hagmann M 2005 IEEE Trans. Nanotechnol. 4 289
[14] Wang L, Zhou R and Xin H 2008 IEEE Trans. Microwave Theory Tech. 56 499
[15] Zhao X C, Zhang Z M, Wang L Y, Xi K, Cao Q Q, Wang D H, Yang Y and Du Y W 2013 Sci. Rep. 3 3421
[16] Jiang J J, Wang H, Guo H H, Yang T, Tang W S, Li D, Ma S, Geng D Y, Liu W and Zhang Z D 2012 Nanoscale Res. Lett. 7 238
[17] Zhang Z D 2007 J. Mater. Sci. Technol. 23 1
[18] Liu W, Zhong W and Dou Y W 2008 J. Nanosci. Nanotechnol. 8 2781
[19] Tang Y, Shao Y, Yao K F and Zhong Y X 2014 Nanotechnology 25 035704
[20] Li C S, Qiao Y J, Li Y N and Wu Y L 2009 Sci. Chin. Tech. Sci. 52 1254
[21] Li C S, Qiao Y J and Li Y M 2012 Sci. Chin. Tech. Sci. 55 1365
[22] Qu J R, Zheng J B, Wang C F, Wu G R and Wang X Y 2013 Acta Phys. Sin. 62 128801 (in Chinese)
[23] Li C S, Wang B S, Qiao Y J, Zhang B Y, Lu W Z and Liang J 2009 Int. J. Miner. Metall. Mater. 16 598
[24] Li C S, Liang T X, Lu W Z, Tang C H, Hu X Q, Cao M S and Liang J 2004 Compos. Sci. Technol. 64 13
[25] Liu J R, Itoh M and Machida K 2003 Appl. Phys. Lett. 83 4017
[26] Zhang Z H, Peng J C, Chen X H and Zhang H 2001 Chin. J. Chem. Phys. 14 198
[27] Vazquez E and Prato M 2009 ACS Nano 3 3819
[28] Fan Z J, Luo G H, Zhang Z F, Zhou L and Wei F 2006 Mater. Sci. Eng. B 132 85
[29] Kovacs J Z, Velagala B S, Schulte K and Bauhofer W 2007 Compos. Sci. Technol. 67 922
[30] Ozgur U 2010 Proc. IEEE 98 1255
[31] Zhang L, Zhu H, Song Y, Zhang Y M and Huang Y 2008 Mater. Sci. Eng. B 153 78
[32] Chen X Y, Xu J B, Bian L, Wang L, Xiong X Q and Gao B 2013 Acta Phys. Sin. 62 198104 (in Chinese)
[33] Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, Brink J V and Kelly P J 2008 Phys. Rev. Lett. 101 026803
[34] Pi K, McCreary K M, Bao W, Han W, Chiang Y F, Li Y, Tsai S W, Lau C N and Kawakami R K 2009 Phys. Rev. B 80 075406
[35] Castro Neto A H, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[36] Sameshima T, Hayasaka H and Haba T 2009 Jpn. J. Appl. Phys. 48 021204
[37] Watts P C P, Hsu W K and Barnes A 2003 Adv. Mater. 15 600
[38] Zhuo R F, Qiao L, Feng H T, Chen J T, Yan D, Wu Z G and Yan P X 2008 J. Appl. Phys. 104 094101
[39] Zhao H T, Han X J, Zhang L F, Wang G Y, Wang C, Li X A and Xu P 2011 Radiat. Phys. Chem. 80 390
[40] Zhao D L, Li X and Shen Z M 2008 Mater. Sci. Eng. B 150 105
Related articles from Frontiers Journals
[1] Wei-Guo Lu, Hui-Rong Li, Wei-Ming Chen, Li-Hui Liu. Numerical Analysis of Magnetic-Shielding Effectiveness for Magnetic Resonant Wireless Power Transfer System[J]. Chin. Phys. Lett., 2017, 34(8): 044102
[2] D. Basandrai, R. K. Bedi, A. Dhami, J. Sharma, S. B. Narang, K. Pubby, A. K. Srivastava. Radiation Losses in the Microwave X Band in Al-Cr Substituted Y-Type Hexaferrites[J]. Chin. Phys. Lett., 2017, 34(4): 044102
[3] Taishi Okita, Toshiyuki Takagi. Magnetic Field Structure and Induced Electric Current Distribution on a Cylindrical Model: Application to Magnetic Nerve Stimulation[J]. Chin. Phys. Lett., 2009, 26(7): 044102
Viewed
Full text


Abstract